Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microcirculation ; : e12871, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805589

RESUMO

OBJECTIVE: This study aimed to determine nicotine's impact on receptor-mediated cyclic adenosine monophosphate (cAMP) synthesis in vascular smooth muscle (VSM). We hypothesize that nicotine impairs ß adrenergic-mediated cAMP signaling in VSM, leading to altered vascular reactivity. METHODS: The effects of nicotine on cAMP signaling and vascular function were systematically tested in aortic VSM cells and acutely isolated aortas from mice expressing the cAMP sensor TEpacVV (Camper), specifically in VSM (e.g., CamperSM). RESULTS: Isoproterenol (ISO)-induced ß-adrenergic production of cAMP in VSM was significantly reduced in cells from second-hand smoke (SHS)-exposed mice and cultured wild-type VSM treated with nicotine. The decrease in cAMP synthesis caused by nicotine was verified in freshly isolated arteries from a mouse that had cAMP sensor expression in VSM (e.g., CamperSM mouse). Functionally, the changes in cAMP signaling in response to nicotine hindered ISO-induced vasodilation, but this was reversed by immediate PDE3 inhibition. CONCLUSIONS: These results imply that nicotine alters VSM ß adrenergic-mediated cAMP signaling and vasodilation, which may contribute to the dysregulation of vascular reactivity and the development of vascular complications for nicotine-containing product users.

2.
Circ Res ; 131(12): 1018-1033, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345826

RESUMO

BACKGROUND: L-type CaV1.2 channels undergo cooperative gating to regulate cell function, although mechanisms are unclear. This study tests the hypothesis that phosphorylation of the CaV1.2 pore-forming subunit α1C at S1928 mediates vascular CaV1.2 cooperativity during diabetic hyperglycemia. METHODS: A multiscale approach including patch-clamp electrophysiology, super-resolution nanoscopy, proximity ligation assay, calcium imaging' pressure myography, and Laser Speckle imaging was implemented to examine CaV1.2 cooperativity, α1C clustering, myogenic tone, and blood flow in human and mouse arterial myocytes/vessels. RESULTS: CaV1.2 activity and cooperative gating increase in arterial myocytes from patients with type 2 diabetes and type 1 diabetic mice, and in wild-type mouse arterial myocytes after elevating extracellular glucose. These changes were prevented in wild-type cells pre-exposed to a PKA inhibitor or cells from knock-in S1928A but not S1700A mice. In addition, α1C clustering at the surface membrane of wild-type, but not wild-type cells pre-exposed to PKA or P2Y11 inhibitors and S1928A arterial myocytes, was elevated upon hyperglycemia and diabetes. CaV1.2 spatial and gating remodeling correlated with enhanced arterial myocyte Ca2+ influx and contractility and in vivo reduction in arterial diameter and blood flow upon hyperglycemia and diabetes in wild-type but not S1928A cells/mice. CONCLUSIONS: These results suggest that PKA-dependent S1928 phosphorylation promotes the spatial reorganization of vascular α1C into "superclusters" upon hyperglycemia and diabetes. This triggers CaV1.2 activity and cooperativity, directly impacting vascular reactivity. The results may lay the foundation for developing therapeutics to correct CaV1.2 and arterial function during diabetic hyperglycemia.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Humanos , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Fosforilação , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo
3.
Function (Oxf) ; 2(5): zqab041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34553140

RESUMO

Cigarette smoke, including secondhand smoke (SHS), has significant detrimental vascular effects, but its effects on myogenic tone of small resistance arteries and the underlying mechanisms are understudied. Although it is apparent that SHS contributes to endothelial dysfunction, much less is known about how this toxicant alters arterial myocyte contraction, leading to alterations in myogenic tone. The study's goal is to determine the effects of SHS on mesenteric arterial myocyte contractility and excitability. C57BL/6J male mice were randomly assigned to either filtered air (FA) or SHS (6 h/d, 5 d/wk) exposed groups for a 4, 8, or 12-weeks period. Third and fourth-order mesenteric arteries and arterial myocytes were acutely isolated and evaluated with pressure myography and patch clamp electrophysiology, respectively. Myogenic tone was found to be elevated in mesenteric arteries from mice exposed to SHS for 12 wk but not for 4 or 8 wk. These results were correlated with an increase in L-type Ca2+ channel activity in mesenteric arterial myocytes after 12 wk of SHS exposure. Moreover, 12 wk SHS exposed arterial myocytes have reduced total potassium channel current density, which correlates with a depolarized membrane potential (Vm). These results suggest that SHS exposure induces alterations in key ionic conductances that modulate arterial myocyte contractility and myogenic tone. Thus, chronic exposure to an environmentally relevant concentration of SHS impairs mesenteric arterial myocyte electrophysiology and myogenic tone, which may contribute to increased blood pressure and risks of developing vascular complications due to passive exposure to cigarette smoke.


Assuntos
Doenças Cardiovasculares , Poluição por Fumaça de Tabaco , Animais , Masculino , Camundongos , Canais Iônicos/farmacologia , Artérias Mesentéricas , Camundongos Endogâmicos C57BL , Poluição por Fumaça de Tabaco/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...