Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 7: 585324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134366

RESUMO

The objective of this study was to document the pharmacokinetics of ketoprofen following 3 mg/kg intramuscular (IM) and intravenous (IV) injections in rainbow trout (Oncorhynchus mykiss) and 8 mg/kg intramuscular (IM) injection in Nile tilapia (Oreochromis niloticus). Plasma was collected laterally from the tail vein for drug analysis at various time intervals up to 72 h following the injection of ketoprofen. In trout, area under the curve (AUC) levels were 115.24 µg hr/mL for IM and 135.69 µg hr/mL for IV groups with a half-life of 4.40 and 3.91 h, respectively. In both trout and tilapia, there were detectable ketoprofen concentrations in most fish for 24 h post-injection. In tilapia, there was a large difference between the R- and S-enantiomers, suggesting either chiral inversion from R- to S-enantiomer or more rapid clearance of the R-enantiomer. AUC values of the S- and R-enantiomers were 510 and 194 µg hr/Ml, respectively, corresponding to a faster clearance for the R-enantiomer. This study shows that there were very high plasma concentrations of ketoprofen in trout and tilapia with no adverse effects observed. Future studies on the efficacy, frequency of dosing, analgesia, adverse effects, and route of administration are warranted.

2.
J Vet Diagn Invest ; 28(1): 12-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26699527

RESUMO

Differences in reported testosterone concentrations in male sea turtle blood samples are common in the veterinary literature, but may be accounted for by differences in sample handling and processing prior to assay. Therefore, our study was performed to determine best practices for testosterone analysis in male sea turtles (Caretta caretta and Chelonia mydas). Blood samples were collected into 5 collection tube types, and assay validation and measured testosterone concentrations were compared across different sample storage (fresh, refrigerated 1 week, or frozen), extraction (unextracted or ether-extracted), and processing treatment (untreated, homogenized, or dissociation reagent) conditions. Ether-extracted and dissociation reagent-treated samples validated in all conditions tested and are recommended for use, as unextracted samples validated only if assayed fresh. Dissociation reagent treatment was simpler to perform than ether extraction and resulted in total testosterone concentrations ~2.7-3.5 times greater than free testosterone measured in ether-extracted samples. Sample homogenization did not affect measured testosterone concentrations, and could be used to increase volume in gelled samples. An annual seasonal testosterone increase was observed in both species when ether extraction or dissociation reagent treatment was used. Annual deslorelin implant treatments in a Chelonia mydas male resulted in suppression of seasonal testosterone following the fourth treatment. Seasonal testosterone patterns resumed following discontinuation of deslorelin. Comparison of in-house and commercially available enzyme immunoassay kits revealed similar patterns of seasonal testosterone increases and deslorelin-induced suppression. Our study highlights the importance of methodological validation and provides laboratorians with best practices for testosterone enzyme immunoassay in sea turtles.


Assuntos
Ensaio de Imunoadsorção Enzimática/veterinária , Testosterona/sangue , Tartarugas/sangue , Animais , Masculino , Valores de Referência , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...