Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Vaccines (Basel) ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38675734

RESUMO

Efficacy data on two malaria vaccines, RTS,S and R21, targeting Plasmodium falciparum circumsporozoite protein (PfCSP), are encouraging. Efficacy may be improved by induction of additional antibodies to neutralizing epitopes outside of the central immunodominant repeat domain of PfCSP. We designed four rPfCSP-based vaccines in an effort to improve the diversity of the antibody response. We also evaluated P. falciparum merozoite surface protein 8 (PfMSP8) as a malaria-specific carrier protein as an alternative to hepatitis B surface antigen. We measured the magnitude, specificity, subclass, avidity, durability, and efficacy of vaccine-induced antibodies in outbred CD1 mice. In comparison to N-terminal- or C-terminal-focused constructs, immunization with near full-length vaccines, rPfCSP (#1) or the chimeric rPfCSP/8 (#2), markedly increased the breadth of B cell epitopes recognized covering the N-terminal domain, junctional region, and central repeat. Both rPfCSP (#1) and rPfCSP/8 (#2) also elicited a high proportion of antibodies to conformation-dependent epitopes in the C-terminus of PfCSP. Fusion of PfCSP to PfMSP8 shifted the specificity of the T cell response away from PfCSP toward PfMSP8 epitopes. Challenge studies with transgenic Plasmodium yoelii sporozoites expressing PfCSP demonstrated high and consistent sterile protection following rPfCSP/8 (#2) immunization. Of note, antibodies to conformational C-terminal epitopes were not required for protection. These results indicate that inclusion of the N-terminal domain of PfCSP can drive responses to protective, repeat, and non-repeat B cell epitopes and that PfMSP8 is an effective carrier for induction of high-titer, durable anti-PfCSP antibodies.

2.
J Immunol ; 206(8): 1817-1831, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33789984

RESUMO

Plasmodium falciparum merozoite surface protein (PfMSP)2 is a target of parasite-neutralizing Abs. Inclusion of recombinant PfMSP2 (rPfMSP2) as a component of a multivalent malaria vaccine is of interest, but presents challenges. Previously, we used the highly immunogenic PfMSP8 as a carrier to enhance production and/or immunogenicity of malaria vaccine targets. In this study, we exploited the benefits of rPfMSP8 as a carrier to optimize a rPfMSP2-based subunit vaccine. rPfMSP2 and chimeric rPfMSP2/8 vaccines produced in Escherichia coli were evaluated in comparative immunogenicity studies in inbred (CB6F1/J) and outbred (CD1) mice, varying the dose and adjuvant. Immunization of mice with both rPfMSP2-based vaccines elicited high-titer anti-PfMSP2 Abs that recognized the major allelic variants of PfMSP2. Vaccine-induced T cells recognized epitopes present in both PfMSP2 and the PfMSP8 carrier. Competition assays revealed differences in Ab specificities induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. In contrast to aluminum hydroxide (Alum) as adjuvant, formulation of rPfMSP2 vaccines with glucopyranosyl lipid adjuvant-stable emulsion, a synthetic TLR4 agonist, elicited Th1-associated cytokines, shifting production of Abs to cytophilic IgG subclasses. The rPfMSP2/8 + glucopyranosyl lipid adjuvant-stable emulsion formulation induced significantly higher Ab titers with superior durability and capacity to opsonize P. falciparum merozoites for phagocytosis. Immunization with a trivalent vaccine including PfMSP2/8, PfMSP1/8, and the P. falciparum 25 kDa sexual stage antigen fused to PfMSP8 (Pfs25/8) induced high levels of Abs specific for epitopes in each targeted domain, with no evidence of antigenic competition. These results are highly encouraging for the addition of rPfMSP2/8 as a component of an efficacious, multivalent, multistage malaria vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Merozoítos/metabolismo , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Células Th1/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/genética , Mapeamento de Epitopos , Feminino , Glucosídeos , Epitopos Imunodominantes , Imunoglobulina G/metabolismo , Lipídeo A , Vacinas Antimaláricas/genética , Masculino , Merozoítos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose , Proteínas de Protozoários/genética
3.
PLoS One ; 15(4): e0232355, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32348377

RESUMO

BACKGROUND: Eradication of Plasmodium falciparum malaria will likely require a multivalent vaccine, but the development of a highly efficacious subunit-based formulation has been challenging. We previously showed that production and immunogenicity of two leading vaccine targets, PfMSP119 (blood-stage) and Pfs25 (sexual stage), could be enhanced upon genetic fusion to merozoite surface protein 8 (PfMSP8). Here, we sought to optimize a Pfs25-based formulation for use in combination with rPfMSP1/8 with the goal of maintaining the immunogenicity of each subunit. METHODS: Comparative mouse studies were conducted to assess the effects of adjuvant selection (Alhydrogel vs. glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE)) and antigen dose (2.5 vs. 0.5 µg) on the induction of anti-Pfs25 immune responses. The antibody response (magnitude, IgG subclass profile, and transmission-reducing activity (TRA)) and cellular responses (proliferation, cytokine production) generated in response to each formulation were assessed. Similarly, immunogenicity of a bivalent vaccine containing rPfMSP1/8 and rPfs25/8 was evaluated. RESULTS: Alum-based formulations elicited strong and comparable humoral and cellular responses regardless of antigen form (unfused rPfs25 or chimeric rPfs25/8) or dose. In contrast, GLA-SE based formulations elicited differential responses as a function of both parameters, with 2.5 µg of rPfs25/8 inducing the highest titers of functional anti-Pfs25 antibodies. Based on these data, chimeric rPfs25/8 was selected and tested in a bivalent formulation with rPfMSP1/8. Strong antibody titers against Pfs25 and PfMSP119 domains were induced with GLA-SE based formulations, with no indication of antigenic competition. CONCLUSIONS: We were able to generate an immunogenic bivalent vaccine designed to target multiple parasite stages that could reduce both clinical disease and parasite transmission. The use of the same PfMSP8 carrier for two different vaccine components was effective in this bivalent formulation. As such, the incorporation of additional protective targets fused to the PfMSP8 carrier into the formulation should be feasible, further broadening the protective response.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos , Humanos , Malária Falciparum/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia
4.
Sci Rep ; 9(1): 9022, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227760

RESUMO

Vaccine trials and cohort studies in Plasmodium falciparum endemic areas indicate that naturally-acquired and vaccine-induced antibodies to merozoite surface protein 2 (MSP2) are associated with resistance to malaria. These data indicate that PfMSP2 has significant potential as a component of a multi-antigen malaria vaccine. To overcome challenges encountered with subunit malaria vaccines, we established that the use of highly immunogenic rPfMSP8 as a carrier protein for leading vaccine candidates rPfMSP119 and rPfs25 facilitated antigen production, minimized antigenic competition and enhanced induction of functional antibodies. We applied this strategy to optimize a rPfMSP2 (3D7)-based subunit vaccine by producing unfused rPfMSP2 or chimeric rPfMSP2/8 in Escherichia coli. rPfMSP2 formed fibrils, which induced splenocyte proliferation in an antigen receptor-independent, TLR2-dependent manner. However, fusion to rPfMSP8 prevented rPfMSP2 amyloid-like fibril formation. Immunization of rabbits elicited high-titer anti-PfMSP2 antibodies that recognized rPfMSP2 of the 3D7 and FC27 alleles, as well as native PfMSP2. Competition assays revealed a difference in the specificity of antibodies induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. Rabbit anti-PfMSP2/8 was superior to rPfMSP2-elicited antibody at opsonizing P. falciparum merozoites for phagocytosis. These data establish rPfMSP8 as an effective carrier for a PfMSP2-based subunit malaria vaccine.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Proteínas Opsonizantes/imunologia , Proteínas de Protozoários/imunologia , Vacinação/métodos , Animais , Especificidade de Anticorpos/imunologia , Antígenos de Protozoários/química , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/química , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Merozoítos/imunologia , Fagocitose/imunologia , Proteínas de Protozoários/química , Coelhos , Especificidade da Espécie , Células THP-1
5.
BMC Med ; 16(1): 204, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30409141

RESUMO

Efforts to develop an effective malaria vaccine have encountered multiple challenges, and have had limited success to date. As the need remains urgent, novel approaches must be explored. One concept that has gained attention uses whole malaria parasites. Building on preclinical studies in animal models, Stanisic et al. describe the development of a vaccine based on chemically attenuated Plasmodium falciparum blood-stage parasites, with an evaluation of safety and immunogenicity in malaria-naïve human subjects. The vaccine was shown to be safe, well tolerated, and capable of priming antigen-specific T cells. This work, and the completion of an initial clinical trial in human subjects, represents a significant advance. While the path forward for this attenuated vaccine remains challenging, these initial findings are encouraging. Importantly, the results provide the foundation and framework for testing modified immunization protocols, and designing subsequent clinical trials to further evaluate safety, test for enhanced immunogenicity, and ultimately measure protective efficacy.Please see related article: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-018-1173-9.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Animais , Humanos , Imunidade Celular , Parasitos , Projetos Piloto , Plasmodium falciparum/imunologia , Vacinação , Vacinas Atenuadas
6.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28993460

RESUMO

Challenges with the production and suboptimal immunogenicity of malaria vaccine candidates have slowed the development of a Plasmodium falciparum multiantigen vaccine. Attempting to resolve these issues, we focused on the use of highly immunogenic merozoite surface protein 8 (MSP8) as a vaccine carrier protein. Previously, we showed that a genetic fusion of the C-terminal 19-kDa fragment of merozoite surface protein 1 (MSP119) to P. falciparum MSP8 (PfMSP8) facilitated antigen production and folding and the induction of neutralizing antibodies to conformational B cell epitopes of MSP119 Here, using the PfMSP1/8 construct, we further optimized the recombinant PfMSP8 (rPfMSP8) carrier by the introduction of two cysteine-to-serine substitutions (CΔS) to improve the yield of the monomeric product. We then sought to test the broad applicability of this approach using the transmission-blocking vaccine candidate Pfs25. The production of rPfs25-based vaccines has presented challenges. Antibodies directed against the four highly constrained epidermal growth factor (EGF)-like domains of Pfs25 block sexual-stage development in mosquitoes. The sequence encoding mature Pfs25 was codon harmonized for expression in Escherichia coli We produced a rPfs25-PfMSP8 fusion protein [rPfs25/8(CΔS)] as well as unfused, mature rPfs25. rPfs25 was purified with a modest yield but required the incorporation of refolding protocols to obtain a proper conformation. In comparison, chimeric rPfs25/8(CΔS) was expressed and easily purified, with the Pfs25 domain bearing the proper conformation without renaturation. Both antigens were immunogenic in rabbits, inducing IgG that bound native Pfs25 and exhibited potent transmission-reducing activity. These data further demonstrate the utility of PfMSP8 as a parasite-specific carrier protein to enhance the production of complex malaria vaccine targets.


Assuntos
Proteínas de Transporte/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Culicidae/parasitologia , Epitopos de Linfócito B/imunologia , Escherichia coli/metabolismo , Masculino , Proteína 1 de Superfície de Merozoito/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Coelhos
7.
PLoS Pathog ; 12(5): e1005647, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27227970

RESUMO

Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i) within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2), glycosylphosphotidylinositol (GPI)-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble "rhoptries" and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise.


Assuntos
Antimaláricos/farmacologia , Colesterol/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Sódio/metabolismo , Western Blotting , Citometria de Fluxo , Imunofluorescência , Humanos , Microscopia Eletrônica de Transmissão , Plasmodium falciparum/metabolismo
8.
Malar J ; 15: 159, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975721

RESUMO

BACKGROUND: The production of properly folded, recombinant sub-unit Plasmodium falciparum malaria vaccine candidates in sufficient quantities is often a challenge. Success in vaccine immunogenicity studies in small animal models does not always predict immunogenicity in non-human primates and/or human subjects. The aim of this study was to assess the immunogenicity of a chimeric blood-stage malaria vaccine in Aotus monkeys. This vaccine candidate includes the neutralizing B cell epitopes of P. falciparum merozoite surface protein 1 (rPfMSP119) genetically linked to a highly immunogenic, well-conserved P. falciparum merozoite surface protein 8 (rPfMSP8 (ΔAsn/Asp)) partner. METHODS: Aotus nancymaae monkeys were immunized with purified rPfMSP1/8 or rPfMSP8 (ΔAsn/Asp) formulated with Montanide ISA 720 as adjuvant, or with adjuvant alone. Antibody responses to MSP119 and MSP8 domains were measured by ELISA following primary, secondary and tertiary immunizations. The functionality of vaccine-induced antibodies was assessed in a standard P. falciparum blood-stage in vitro growth inhibition assay. Non-parametric tests with corrections for multiple comparisons when appropriate were used to determine the significance of differences in antigen-specific IgG titres and in parasite growth inhibition. RESULTS: The chimeric rPfMSP1/8 vaccine was shown to be well tolerated and highly immunogenic with boost-able antibody responses elicited to both PfMSP8 and PfMSP119 domains. Elicited antibodies were highly cross-reactive between FVO and 3D7 alleles of PfMSP119 and potently inhibited the in vitro growth of P. falciparum blood-stage parasites. CONCLUSIONS: Similar to previous results with inbred and outbred mice and with rabbits, the PfMSP1/8 vaccine was shown to be highly effective in eliciting P. falciparum growth inhibitory antibodies upon immunization of non-human primates. The data support the further assessment of PfMSP1/8 as a component of a multivalent vaccine for use in human subjects. As important, the data indicate that rPfMSP8 (ΔAsn/Asp) can be used as a malaria specific carrier protein to: (1) drive production of antibody responses to neutralizing B cell epitopes of heterologous vaccine candidates and (2) facilitate production of properly folded, recombinant P. falciparum subunit vaccines in high yield.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteína 1 de Superfície de Merozoito/imunologia , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Aotidae , Reações Cruzadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Fabaceae , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Malária Falciparum/imunologia , Manitol/administração & dosagem , Manitol/análogos & derivados , Proteína 1 de Superfície de Merozoito/genética , Ácidos Oleicos/administração & dosagem , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
9.
Eukaryot Cell ; 14(4): 371-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25662767

RESUMO

Malaria parasites replicating inside red blood cells (RBCs) export a large subset of proteins into the erythrocyte cytoplasm to facilitate parasite growth and survival. PTEX, the parasite-encoded translocon, mediates protein transport across the parasitophorous vacuolar membrane (PVM) in Plasmodium falciparum-infected erythrocytes. Proteins exported into the erythrocyte cytoplasm have been localized to membranous structures, such as Maurer's clefts, small vesicles, and a tubovesicular network. Comparable studies of protein trafficking in Plasmodium vivax-infected reticulocytes are limited. With Plasmodium yoelii-infected reticulocytes, we identified exported protein 2 (Exp2) in a proteomic screen of proteins putatively transported across the PVM. Immunofluorescence studies showed that P. yoelii Exp2 (PyExp2) was primarily localized to the PVM. Unexpectedly, PyExp2 was also associated with distinct, membrane-bound vesicles in the reticulocyte cytoplasm. This is in contrast to P. falciparum in mature RBCs, where P. falciparum Exp2 (PfExp2) is exclusively localized to the PVM. Two P. yoelii-exported proteins, PY04481 (encoded by a pyst-a gene) and PY06203 (PypAg-1), partially colocalized with these PyExp2-positive vesicles. Further analysis revealed that with P. yoelii, Plasmodium berghei, and P. falciparum, cytoplasmic Exp2-positive vesicles were primarily observed in CD71(+) reticulocytes versus mature RBCs. In transgenic P. yoelii 17X parasites, the association of hemagglutinin-tagged PyExp2 with the PVM and cytoplasmic vesicles was retained, but the pyexp2 gene was refractory to deletion. These data suggest that the localization of Exp2 in mouse and human RBCs can be influenced by the host cell environment. Exp2 may function at multiple points in the pathway by which parasites traffic proteins into and through the reticulocyte cytoplasm.


Assuntos
Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium/genética , Proteínas de Protozoários/metabolismo , Animais , Citoplasma/metabolismo , Interações Hospedeiro-Parasita , Humanos , Membranas Intracelulares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico , Proteômica , Proteínas de Protozoários/genética , Vacúolos/metabolismo
10.
Infect Immun ; 81(10): 3843-54, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23897613

RESUMO

The C-terminal 19-kDa domain of Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is an established target of protective antibodies. However, clinical trials of PfMSP142, a leading blood-stage vaccine candidate which contains the protective epitopes of PfMSP119, revealed suboptimal immunogenicity and efficacy. Based on proof-of-concept studies in the Plasmodium yoelii murine model, we produced a chimeric vaccine antigen containing recombinant PfMSP119 (rPfMSP119) fused to the N terminus of P. falciparum merozoite surface protein 8 that lacked its low-complexity Asn/Asp-rich domain, rPfMSP8 (ΔAsn/Asp). Immunization of mice with the chimeric rPfMSP1/8 vaccine elicited strong T cell responses to conserved epitopes associated with the rPfMSP8 (ΔAsn/Asp) fusion partner. While specific for PfMSP8, this T cell response was adequate to provide help for the production of high titers of antibodies to both PfMSP119 and rPfMSP8 (ΔAsn/Asp) components. This occurred with formulations adjuvanted with either Quil A or with Montanide ISA 720 plus CpG oligodeoxynucleotide (ODN) and was observed in both inbred and outbred strains of mice. PfMSP1/8-induced antibodies were highly reactive with two major alleles of PfMSP119 (FVO and 3D7). Of particular interest, immunization with PfMSP1/8 elicited higher titers of PfMSP119-specific antibodies than a combined formulation of rPfMSP142 and rPfMSP8 (ΔAsn/Asp). As a measure of functionality, PfMSP1/8-specific rabbit IgG was shown to potently inhibit the in vitro growth of blood-stage parasites of the FVO and 3D7 strains of P. falciparum. These data support the further testing and evaluation of this chimeric PfMSP1/8 antigen as a component of a multivalent vaccine for P. falciparum malaria.


Assuntos
Anticorpos Antiprotozoários/sangue , Vacinas Antimaláricas/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/metabolismo , Proteínas Recombinantes/imunologia , Animais , Epitopos , Masculino , Proteína 1 de Superfície de Merozoito/metabolismo , Camundongos , Plasmodium falciparum/imunologia , Plasmodium yoelii/metabolismo , Coelhos
11.
Malar J ; 11: 265, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22866913

RESUMO

BACKGROUND: Microarray studies using in vitro cultures of synchronized, blood-stage Plasmodium falciparum malaria parasites have revealed a 'just-in-time' cascade of gene expression with some indication that these transcriptional patterns remain stable even in the presence of external stressors. However, direct analysis of transcription in P. falciparum blood-stage parasites obtained from the blood of infected patients suggests that parasite gene expression may be modulated by factors present in the in vivo environment of the host. The aim of this study was to examine changes in gene expression of the rodent malaria parasite, Plasmodium yoelii 17X, while varying the in vivo setting of replication. METHODS: Using P. yoelii 17X parasites replicating in vivo, differential gene expression in parasites isolated from individual mice, from independent infections, during ascending, peak and descending parasitaemia and in the presence and absence of host antibody responses was examined using P. yoelii DNA microarrays. A genome-wide analysis to identify coordinated changes in groups of genes associated with specific biological pathways was a primary focus, although an analysis of the expression patterns of two multi-gene families in P. yoelii, the yir and pyst-a families, was also completed. RESULTS: Across experimental conditions, transcription was surprisingly stable with little evidence for distinct transcriptional states or for consistent changes in specific pathways. Differential gene expression was greatest when comparing differences due to parasite load and/or host cell availability. However, the number of differentially expressed genes was generally low. Of genes that were differentially expressed, many involved biologically diverse pathways. There was little to no differential expression of members of the yir and pyst-a multigene families that encode polymorphic proteins associated with the membrane of infected erythrocytes. However, a relatively large number of these genes were expressed during blood-stage infection regardless of experimental condition. CONCLUSIONS: Taken together, these results indicate that 1) P. yoelii gene expression remains stable in the presence of a changing host environment, and 2) concurrent expression of a large number of the polymorphic yir and pyst-a genes, rather than differential expression in response to specific host factors, may in itself limit the effectiveness of host immune responses.


Assuntos
Sangue/parasitologia , Perfilação da Expressão Gênica , Malária/parasitologia , Parasitemia/parasitologia , Plasmodium yoelii/genética , Adaptação Fisiológica , Animais , Regulação da Expressão Gênica , Camundongos , Análise em Microsséries , Análise de Sequência com Séries de Oligonucleotídeos
12.
Infect Immun ; 80(7): 2473-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22585960

RESUMO

The C-terminal 19-kDa domain of merozoite surface protein 1 (MSP119) is the target of protective antibodies but alone is poorly immunogenic. Previously, using the Plasmodium yoelii murine model, we fused P. yoelii MSP119 (PyMSP119) with full-length P. yoelii merozoite surface protein 8 (MSP8). Upon immunization, the MSP8-restricted T cell response provided help for the production of high and sustained levels of protective PyMSP119- and PyMSP8-specific antibodies. Here, we assessed the vaccine potential of MSP8 of the human malaria parasite, Plasmodium falciparum. Distinct from PyMSP8, P. falciparum MSP8 (PfMSP8) contains an N-terminal asparagine and aspartic acid (Asn/Asp)-rich domain whose function is unknown. Comparative analysis of recombinant full-length PfMSP8 and a truncated version devoid of the Asn/Asp-rich domain, PfMSP8(ΔAsn/Asp), showed that both proteins were immunogenic for T cells and B cells. All T cell epitopes utilized mapped within rPfMSP8(ΔAsn/Asp). The dominant B cell epitopes were conformational and common to both rPfMSP8 and rPfMSP8(ΔAsn/Asp). Analysis of native PfMSP8 expression revealed that PfMSP8 is present intracellularly in late schizonts and merozoites. Following invasion, PfMSP8 is found distributed on the surface of ring- and trophozoite-stage parasites. Consistent with a low and/or transient expression of PfMSP8 on the surface of merozoites, PfMSP8-specific rabbit IgG did not inhibit the in vitro growth of P. falciparum blood-stage parasites. These studies suggest that the further development of PfMSP8 as a malaria vaccine component should focus on the use of PfMSP8(ΔAsn/Asp) and its conserved, immunogenic T cell epitopes as a fusion partner for protective domains of poor immunogens, including PfMSP119.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Linfócitos T/imunologia , Animais , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Coelhos
13.
Infect Immun ; 78(12): 5151-62, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20837716

RESUMO

The excessive production of proinflammatory cytokines plays a significant role in the pathogenesis of severe malaria. Mammalian macrophage migration inhibitory factor (MIF) (mMIF) is an immune mediator that promotes a sustained proinflammatory response by inhibiting the glucocorticoid-mediated downregulation of inflammation. In addition, Plasmodium parasites also encode a homologue of mammalian MIF that is expressed in asexual-stage parasites. We used the Plasmodium yoelii murine model to study the potential role of parasite-encoded MIF in the pathogenesis of malaria. Antibodies raised against purified, non-epitope-tagged P. yoelii MIF (PyMIF) were used to localize expression in trophozoite- and schizont-stage parasites and demonstrate extracellular release. In vitro, recombinant PyMIF was shown to actively induce the chemotaxis of macrophages but did not induce or enhance tumor necrosis factor alpha (TNF-α) production from peritoneal macrophages. To examine the role of parasite-derived PyMIF in vivo, two transgenic parasite lines that constitutively overexpress PyMIF were generated, one in a nonlethal P. yoelii 17X background [Py17X-MIF(+)] and the other in a lethal P. yoelii 17XL background [Py17XL-MIF(+)]. Challenge studies with transgenic parasites in mice showed that the increased expression of PyMIF resulted in a reduction in disease severity. Mice infected with Py17X-MIF(+) developed lower peak parasitemia levels than controls, while malaria-associated anemia was unaltered. Infection with Py17XL-MIF(+) resulted in a prolonged course of infection and a reduction in the overall mortality rate. Combined, the data indicate that parasite-derived MIF does not contribute significantly to immunopathology but, through its chemotactic ability toward macrophages, may attenuate disease and prolong infection of highly virulent parasite isolates.


Assuntos
Fatores Inibidores da Migração de Macrófagos/imunologia , Malária/imunologia , Plasmodium yoelii/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Técnica Indireta de Fluorescência para Anticorpo , Fatores Inibidores da Migração de Macrófagos/fisiologia , Macrófagos/imunologia , Macrófagos/fisiologia , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmodium yoelii/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/fisiologia
14.
Vaccine ; 28(42): 6876-84, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20709001

RESUMO

An efficacious malaria vaccine remains elusive despite concerted efforts. Using the Plasmodium yoelii murine model, we previously reported that immunization with the C-terminal 19 kDa domain of merozoite surface protein 1 (MSP1(19)) fused to full-length MSP8 protected against lethal P. yoelii 17XL, well beyond that achieved by single or combined immunizations with the component antigens. Here, we continue the evaluation of the chimeric PyMSP1/8 vaccine. We show that immunization with rPyMSP1/8 vaccine elicited an MSP8-restricted T cell response that was sufficient to provide help for both PyMSP1(19) and PyMSP8-specific B cells to produce high and sustained levels of protective antibodies. The enhanced efficacy of immunization with rPyMSP1/8, in comparison to a combined formulation of rPyMSP1(42) and rPyMSP8, was not due to improved conformation of protective B cell epitopes in the chimeric molecule. Unexpectedly, rPyMSP1/8 vaccine-induced antibody responses were not boosted by exposure to P. yoelii 17XL infected RBCs. However, rPyMSP1/8 immunized and infected mice mounted robust responses to a diverse set of blood-stage antigens. The data support the further development of an MSP1/8 chimeric vaccine but also suggest that vaccines that prime for responses to a diverse set of parasite proteins will be required to maximize vaccine efficacy.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Proteína 1 de Superfície de Merozoito/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Formação de Anticorpos , Linfócitos B/imunologia , Proliferação de Células , Epitopos de Linfócito B/imunologia , Malária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium yoelii/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia
15.
Infect Immun ; 78(10): 4331-40, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660608

RESUMO

Blood-stage Plasmodium chabaudi infections are suppressed by antibody-mediated immunity and/or cell-mediated immunity (CMI). To determine the contributions of NK cells and γδ T cells to protective immunity, C57BL/6 (wild-type [WT]) mice and B-cell-deficient (J(H(-/-))) mice were infected with P. chabaudi and depleted of NK cells or γδ T cells with monoclonal antibody. The time courses of parasitemia in NK-cell-depleted WT mice and J(H(-/-)) mice were similar to those of control mice, indicating that deficiencies in NK cells, NKT cells, or CD8(+) T cells had little effect on parasitemia. In contrast, high levels of noncuring parasitemia occurred in J(H(-/-)) mice depleted of γδ T cells. Depletion of γδ T cells during chronic parasitemia in B-cell-deficient J(H(-/-)) mice resulted in an immediate and marked exacerbation of parasitemia, suggesting that γδ T cells have a direct killing effect in vivo on blood-stage parasites. Cytokine analyses revealed that levels of interleukin-10, gamma interferon (IFN-γ), and macrophage chemoattractant protein 1 (MCP-1) in the sera of γδ T-cell-depleted mice were significantly (P < 0.05) decreased compared to hamster immunoglobulin-injected controls, but these cytokine levels were similar in NK-cell-depleted mice and their controls. The time courses of parasitemia in CCR2(-/-) and J(H(-/-)) × CCR2(-/-) mice and in their controls were nearly identical, indicating that MCP-1 is not required for the control of parasitemia. Collectively, these data indicate that the suppression of acute P. chabaudi infection by CMI is γδ T cell dependent, is independent of NK cells, and may be attributed to the deficient IFN-γ response seen early in γδ T-cell-depleted mice.


Assuntos
Células Matadoras Naturais/fisiologia , Malária/imunologia , Plasmodium chabaudi , Subpopulações de Linfócitos T/fisiologia , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Cricetinae , Feminino , Regulação da Expressão Gênica/imunologia , Imunidade Celular , Imunoglobulina G/farmacologia , Interferon gama/genética , Interferon gama/metabolismo , Malária/parasitologia , Masculino , Camundongos , Camundongos Knockout , Parasitemia/imunologia , Fatores de Tempo
16.
Cell Host Microbe ; 5(2): 191-9, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19218089

RESUMO

Intracellular pathogens have devised mechanisms to exploit their host cells to ensure their survival and replication. The malaria parasite Plasmodium falciparum relies on an exchange of metabolites with the host for proliferation. Here we describe a mass spectrometry-based metabolomic analysis of the parasite throughout its 48 hr intraerythrocytic developmental cycle. Our results reveal a general modulation of metabolite levels by the parasite, with numerous metabolites varying in phase with the developmental cycle. Others differed from uninfected cells irrespective of the developmental stage. Among these was extracellular arginine, which was specifically converted to ornithine by the parasite. To identify the biochemical basis for this effect, we disrupted the plasmodium arginase gene in the rodent malaria model P. berghei. These parasites were viable but did not convert arginine to ornithine. Our results suggest that systemic arginine depletion by the parasite may be a factor in human malarial hypoargininemia associated with cerebral malaria pathogenesis.


Assuntos
Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Metaboloma , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Arginina/sangue , Arginina/metabolismo , Técnicas de Inativação de Genes , Humanos , Malária/parasitologia , Espectrometria de Massas/métodos , Camundongos , Ornitina/metabolismo , Plasmodium berghei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
17.
Clin Vaccine Immunol ; 16(3): 293-302, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19116303

RESUMO

For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 1(42) (MSP1(42)) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP1(42) (PcMSP1(42)) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP1(42) vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP1(42) vaccines.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium chabaudi/imunologia , Proteínas de Protozoários/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Biomarcadores , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/prevenção & controle , Vacinação/métodos
18.
J Immunol ; 180(1): 444-53, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18097046

RESUMO

Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Interferon gama/metabolismo , Interleucina-4/metabolismo , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium yoelii , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/uso terapêutico , Interferon gama/genética , Interleucina-4/genética , Malária/imunologia , Vacinas Antimaláricas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas de Protozoários/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Vacinação
19.
Cytometry A ; 71(4): 242-50, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17252581

RESUMO

BACKGROUND: Measuring antibody production in response to antigen exposure or vaccination is key to disease prevention and treatment. Our understanding of the mechanisms involved in the antibody response is limited by a lack of sensitive analysis methods. We address this limitation using multiplexed microsphere arrays for the semi -quantitative analysis of antibody production in response to malaria infection. METHODS: We used microspheres as solid supports on which to capture and analyze circulating antibodies. Antigen immobilized on beads captured antigen-specific antibodies for semi- quantitative analysis using fluorescent secondary antibodies. Anti-immunoglobulin antibodies on beads captured specific antibody isotypes for affinity estimation using fluorescent antigen. RESULTS: Antigen-mediated capture of plasma antibodies enables determination of antigen-specific antibody "titer," a semi-quantitative parameter describing a convolution of antibody abundance and avidity, as well as parameters describing numbers of antibodies bound/bead at saturation and the plasma concentration-dependent approach to saturation. Results were identical in single-plex and multiplex assays, and in qualitative agreement with similar parameters derived from ELISA-based assays. Isotype-specific antibody-mediated capture of plasma antibodies allowed the estimation of the affinity of antibody for antigen. CONCLUSION: Analysis of antibody responses using microspheres and flow cytometry offer significant advantages in speed, sample size, and quantification over standard ELISA-based titer methods.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/imunologia , Malária/metabolismo , Proteínas de Membrana/sangue , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Modelos Animais , Modelos Biológicos , Plasmodium chabaudi/imunologia , Proteínas de Protozoários/sangue , Proteínas de Protozoários/imunologia
20.
Infect Immun ; 75(3): 1349-58, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17158895

RESUMO

The 42-kDa processed fragment of Plasmodium falciparum merozoite surface protein 1 (MSP-1(42)) is a prime candidate for a blood-stage malaria vaccine. Merozoite surface protein 8 contains two C-terminal epidermal growth factor (EGF)-like domains that may function similarly to those of MSP-1(42). Immunization with either MSP-1 or MSP-8 induces protection that is mediated primarily by antibodies against conformation-dependent epitopes. In a series of comparative immunogenicity and efficacy studies using the Plasmodium yoelii rodent model, we tested the ability of recombinant P. yoelii MSP-8 (rPyMSP-8) to complement rPyMSP-1-based vaccines. Unlike MSP-1, PyMSP-8-dependent protection required immunization with the full-length protein and was not induced with recombinant antigens that contained only the C-terminal EGF-like domains. Unlike PyMSP-8, the immunogenicity of the PyMSP-1 EGF-like domains was low when present as part of the rPyMSP-1(42) antigen. Immunization with a mixture of rPyMSP-1(42) and rPyMSP-8 further inhibited the antibody response to protective epitopes of rPyMSP-1(42) and did not improve vaccine efficacy. To improve PyMSP-1 immunogenicity, we produced a chimeric antigen containing the EGF-like domains of PyMSP-1 fused to the N terminus of PyMSP-8. Immunization with the chimeric rPyMSP-1/8 antigen induced high and comparable antibody responses against the EGF-like domains of both PyMSP-1 and PyMSP-8. This enhanced MSP-1-specific antibody response and the concurrent targeting of MSP-1 and MSP-8 resulted in improved, nearly complete protection against lethal P. yoelii 17XL malaria. Unexpectedly, immunization with rPyMSP-1/8 failed to protect against challenge infection with reticulocyte-restricted P. yoelii 17X parasites. Overall, these data establish an effective strategy to improve the efficacy of P. falciparum MSP-based vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Merozoítos/imunologia , Plasmodium yoelii/imunologia , Proteínas Recombinantes de Fusão/imunologia , Adjuvantes Imunológicos/genética , Animais , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Masculino , Proteínas de Membrana/genética , Proteína 1 de Superfície de Merozoito/administração & dosagem , Proteína 1 de Superfície de Merozoito/genética , Proteína 1 de Superfície de Merozoito/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium yoelii/genética , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas Recombinantes de Fusão/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...