Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 143(4): 505-521, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35303161

RESUMO

Inhibition of Bruton's Tyrosine Kinase (BTKi) is now viewed as a promising next-generation B-cell-targeting therapy for autoimmune diseases including multiple sclerosis (MS). Surprisingly little is known; however, about how BTKi influences MS disease-implicated functions of B cells. Here, we demonstrate that in addition to its expected impact on B-cell activation, BTKi attenuates B-cell:T-cell interactions via a novel mechanism involving modulation of B-cell metabolic pathways which, in turn, mediates an anti-inflammatory modulation of the B cells. In vitro, BTKi, as well as direct inhibition of B-cell mitochondrial respiration (but not glycolysis), limit the B-cell capacity to serve as APC to T cells. The role of metabolism in the regulation of human B-cell responses is confirmed when examining B cells of rare patients with mitochondrial respiratory chain mutations. We further demonstrate that both BTKi and metabolic modulation ex vivo can abrogate the aberrant activation and costimulatory molecule expression of B cells of untreated MS patients. Finally, as proof-of-principle in a Phase 1 study of healthy volunteers, we confirm that in vivo BTKi treatment reduces circulating B-cell mitochondrial respiration, diminishes their activation-induced expression of costimulatory molecules, and mediates an anti-inflammatory shift in the B-cell responses which is associated with an attenuation of T-cell pro-inflammatory responses. These data collectively elucidate a novel non-depleting mechanism by which BTKi mediates its effects on disease-implicated B-cell responses and reveals that modulating B-cell metabolism may be a viable therapeutic approach to target pro-inflammatory B cells.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Linfócitos B , Esclerose Múltipla , Inibidores de Proteínas Quinases , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Comunicação Celular , Humanos , Esclerose Múltipla/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
J Med Chem ; 65(2): 1206-1224, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34734694

RESUMO

Multiple Sclerosis is a chronic autoimmune neurodegenerative disorder of the central nervous system (CNS) that is characterized by inflammation, demyelination, and axonal injury leading to permeant disability. In the early stage of MS, inflammation is the primary driver of the disease progression. There remains an unmet need to develop high efficacy therapies with superior safety profiles to prevent the inflammation processes leading to disability. Herein, we describe the discovery of BIIB091, a structurally distinct orthosteric ATP competitive, reversible inhibitor that binds the BTK protein in a DFG-in confirmation designed to sequester Tyr-551, an important phosphorylation site on BTK, into an inactive conformation with excellent affinity. Preclinical studies demonstrated BIB091 to be a high potency molecule with good drug-like properties and a safety/tolerability profile suitable for clinical development as a highly selective, reversible BTKi for treating autoimmune diseases such as MS.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Descoberta de Drogas , Esclerose Múltipla , Inibidores de Proteínas Quinases , Animais , Masculino , Ratos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Macaca fascicularis , Esclerose Múltipla/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Distribuição Tecidual
3.
Bio Protoc ; 11(14): e4091, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395729

RESUMO

Microglia are a unique type of tissue-resident innate immune cell found within the brain, spinal cord, and retina. In the healthy nervous system, their main functions are to defend the tissue against infectious microbes, support neuronal networks through synapse remodeling, and clear extracellular debris and dying cells through phagocytosis. Many existing microglia isolation protocols require the use of enzymatic tissue digestion or magnetic bead-based isolation steps, which increase both the time and cost of these procedures and introduce variability to the experiment. Here, we report a protocol to generate single-cell suspensions from freshly harvested murine brains or spinal cords, which efficiently dissociates tissue and removes myelin debris through simple mechanical dissociation and density centrifugation and can be applied to rat and non-human primate tissues. We further describe the importance of including empty channels in downstream flow cytometry analyses of microglia single-cell suspensions to accurately assess the expression of protein targets in this highly autofluorescent cell type. This methodology ensures that observed fluorescence signals are not incorrectly attributed to the protein target of interest by appropriately taking into account the unique autofluorescence of this cell type, a phenomenon already present in young animals and that increases with aging to levels that are comparable to those observed with antibodies against highly abundant antigens.

4.
Brain ; 144(8): 2361-2374, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34145876

RESUMO

Autoantibodies are a hallmark of numerous neurological disorders, including multiple sclerosis, autoimmune encephalitides and neuromyelitis optica. Whilst well understood in peripheral myeloid cells, the pathophysiological significance of autoantibody-induced Fc receptor signalling in microglia remains unknown, in part due to the lack of a robust in vivo model. Moreover, the application of therapeutic antibodies for neurodegenerative disease also highlights the importance of understanding Fc receptor signalling in microglia. Here, we describe a novel in vivo experimental paradigm that allows for selective engagement of Fc receptors within the CNS by peripherally injecting anti-myelin oligodendrocyte glycoprotein (MOG) monoclonal antibodies into normal wild-type mice. MOG antigen-bound immunoglobulins were detected throughout the CNS and triggered a rapid and tightly regulated proliferative response in both brain and spinal cord microglia. This microglial response was abrogated when anti-MOG antibodies were deprived of Fc receptor effector function or injected into Fcγ receptor knockout mice and was associated with the downregulation of Fc receptors in microglia, but not peripheral myeloid cells, establishing that this response was dependent on central Fc receptor engagement. Downstream of the Fc receptors, BTK was a required signalling node for this response, as microglia proliferation was amplified in BtkE41K knock-in mice expressing a constitutively active form of the enzyme and blunted in mice treated with a CNS-penetrant small molecule inhibitor of BTK. Finally, this response was associated with transient and stringently regulated changes in gene expression predominantly related to cellular proliferation, which markedly differed from transcriptional programs typically associated with Fc receptor engagement in peripheral myeloid cells. Together, these results establish a physiologically-meaningful functional response to Fc receptor and BTK signalling in microglia, while providing a novel in vivo tool to further dissect the roles of microglia-specific Fc receptor and BTK-driven responses to both pathogenic and therapeutic antibodies in CNS homeostasis and disease.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Autoanticorpos/imunologia , Encéfalo/patologia , Microglia/patologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Receptores Fc/metabolismo , Medula Espinal/patologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Camundongos , Microglia/imunologia , Microglia/metabolismo , Medula Espinal/imunologia , Medula Espinal/metabolismo
5.
Clin Transl Immunology ; 10(6): e1295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141433

RESUMO

OBJECTIVES: Bruton's tyrosine kinase (BTK) plays a non-redundant signaling role downstream of the B-cell receptor (BCR) in B cells and the receptors for the Fc region of immunoglobulins (FcR) in myeloid cells. Here, we characterise BIIB091, a novel, potent, selective and reversible small-molecule inhibitor of BTK. METHODS: BIIB091 was evaluated in vitro and in vivo in preclinical models and in phase 1 clinical trial. RESULTS: In vitro, BIIB091 potently inhibited BTK-dependent proximal signaling and distal functional responses in both B cells and myeloid cells with IC50s ranging from 3 to 106 nm, including antigen presentation to T cells, a key mechanism of action thought to be underlying the efficacy of B cell-targeted therapeutics in multiple sclerosis. BIIB091 effectively sequestered tyrosine 551 in the kinase pocket by forming long-lived complexes with BTK with t 1/2 of more than 40 min, thereby preventing its phosphorylation by upstream kinases. As a key differentiating feature of BIIB091, this property explains the very potent whole blood IC50s of 87 and 106 nm observed with stimulated B cells and myeloid cells, respectively. In vivo, BIIB091 blocked B-cell activation, antibody production and germinal center differentiation. In phase 1 healthy volunteer trial, BIIB091 inhibited naïve and unswitched memory B-cell activation, with an in vivo IC50 of 55 nm and without significant impact on lymphoid or myeloid cell survival after 14 days of dosing. CONCLUSION: Pharmacodynamic results obtained in preclinical and early clinical settings support the advancement of BIIB091 in phase 2 clinical trials.

6.
Front Cell Neurosci ; 14: 592005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33473245

RESUMO

Microglia are central nervous system (CNS) resident immune cells that have been implicated in neuroinflammatory pathogenesis of a variety of neurological conditions. Their manifold context-dependent contributions to neuroinflammation are only beginning to be elucidated, which can be attributed in part to the challenges of studying microglia in vivo and the lack of tractable in vitro systems to study microglia function. Organotypic brain slice cultures offer a tissue-relevant context that enables the study of CNS resident cells and the analysis of brain slice microglial phenotypes has provided important insights, in particular into neuroprotective functions. Here we use RNA sequencing, direct digital quantification of gene expression with nCounter® technology and targeted analysis of individual microglial signature genes, to characterize brain slice microglia relative to acutely-isolated counterparts and 2-dimensional (2D) primary microglia cultures, a widely used in vitro surrogate. Analysis using single cell and population-based methods found brain slice microglia exhibited better preservation of canonical microglia markers and overall gene expression with stronger fidelity to acutely-isolated adult microglia, relative to in vitro cells. We characterized the dynamic phenotypic changes of brain slice microglia over time, after plating in culture. Mechanical damage associated with slice preparation prompted an initial period of inflammation, which resolved over time. Based on flow cytometry and gene expression profiling we identified the 2-week timepoint as optimal for investigation of microglia responses to exogenously-applied stimuli as exemplified by treatment-induced neuroinflammatory changes observed in microglia following LPS, TNF and GM-CSF addition to the culture medium. Altogether these findings indicate that brain slice cultures provide an experimental system superior to in vitro culture of microglia as a surrogate to investigate microglia functions, and the impact of soluble factors and cellular context on their physiology.

7.
J Diabetes Res ; 2016: 9083103, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069933

RESUMO

Type 1 diabetes is an autoimmune disease in which insulin-producing pancreatic islet ß cells are the target of self-reactive B and T cells. T cells reactive with epitopes derived from insulin and/or IGRP are critical for the initiation and maintenance of disease, but T cells reactive with other islet antigens likely have an essential role in disease progression. We sought to identify candidate CD8(+) T cell epitopes that are pathogenic in type 1 diabetes. Proteins that elicit autoantibodies in human type 1 diabetes were analyzed by predictive algorithms for candidate epitopes. Using several different tolerizing regimes using synthetic peptides, two new predicted tolerogenic CD8(+) T cell epitopes were identified in the murine homolog of the major human islet autoantigen zinc transporter ZnT8 (aa 158-166 and 282-290) and one in a non-ß cell protein, dopamine ß-hydroxylase (aa 233-241). Tolerizing vaccination of NOD mice with a cDNA plasmid expressing full-length proinsulin prevented diabetes, whereas plasmids encoding ZnT8 and DßH did not. However, tolerizing vaccination of NOD mice with the proinsulin plasmid in combination with plasmids expressing ZnT8 and DßH decreased insulitis and enhanced prevention of disease compared to vaccination with the plasmid encoding proinsulin alone.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas de Transporte de Cátions/imunologia , Diabetes Mellitus Tipo 1/terapia , Dopamina beta-Hidroxilase/imunologia , Epitopos de Linfócito T , Terapia Genética/métodos , Tolerância Imunológica , Células Secretoras de Insulina/imunologia , Proinsulina/imunologia , Vacinação , Animais , Autoanticorpos/imunologia , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Dopamina beta-Hidroxilase/genética , Feminino , Humanos , Células Secretoras de Insulina/patologia , Ativação Linfocitária , Camundongos Endogâmicos NOD , Proinsulina/genética , Fatores de Tempo , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Transportador 8 de Zinco
8.
PLoS One ; 7(5): e36101, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22567129

RESUMO

CD8(+) tumor infiltrating T cells (TIL) lack effector-phase functions due to defective proximal TCR-mediated signaling previously shown to result from inactivation of p56(lck) kinase. We identify a novel interacting partner for p56(lck) in nonlytic TIL, Protocadherin-18 ('pcdh18'), and show that pcdh18 is transcribed upon in vitro or in vivo activation of all CD8(+) central memory T cells (CD44(+)CD62L(hi)CD127(+)) coincident with conversion into effector memory cells (CD44(+)CD62L(lo)CD127(+)). Expression of pcdh18 in primary CD8(+) effector cells induces the phenotype of nonlytic TIL: defective proximal TCR signaling, cytokine secretion, and cytolysis, and enhanced AICD. pcdh18 contains a motif (centered at Y842) shared with src kinases (QGQYQP) that is required for the inhibitory phenotype. Thus, pcdh18 is a novel activation marker of CD8(+) memory T cells that can function as an inhibitory signaling receptor and restrict the effector phase.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Caderinas/metabolismo , Adenocarcinoma/metabolismo , Animais , Caderinas/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Neoplasias do Colo/metabolismo , Masculino , Camundongos
9.
J Immunol ; 187(9): 4459-66, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21949020

RESUMO

The adapter protein Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is critical for multiple aspects of T cell development and function. Through its protein-binding domains, SLP-76 serves as a platform for the assembly of multiple enzymes and adapter proteins that function together to activate second messengers required for TCR signal propagation. The N terminus of SLP-76, which contains three tyrosines that serve as docking sites for SH2 domain-containing proteins, and the central proline-rich region of SLP-76 have been well studied and are known to be important for both thymocyte selection and activation of peripheral T cells. Less is known about the function of the C-terminal SH2 domain of SLP-76. This region inducibly associates with ADAP and HPK1. Combining regulated deletion of endogenous SLP-76 with transgenic expression of a SLP-76 SH2 domain mutant, we demonstrate that the SLP-76 SH2 domain is required for peripheral T cell activation and positive selection of thymocytes, a function not previously attributed to this region. This domain is also important for T cell proliferation, IL-2 production, and phosphorylation of protein kinase D and IκB. ADAP-deficient T cells display similar, but in some cases less severe, defects despite phosphorylation of a negative regulatory site on SLP-76 by HPK1, a function that is lost in SLP-76 SH2 domain mutant T cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Fosfoproteínas/fisiologia , Linfócitos T/citologia , Linfócitos T/imunologia , Domínios de Homologia de src/imunologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular/genética , Humanos , Células Jurkat , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Domínios de Homologia de src/genética
10.
Blood ; 116(25): 5548-59, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20847203

RESUMO

SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) nucleates a signaling complex critical for T-cell receptor (TCR) signal propagation. Mutations in the tyrosines of SLP-76 result in graded defects in TCR-induced signals depending on the tyrosine(s) affected. Here we use 2 strains of genomic knock-in mice expressing tyrosine to phenylalanine mutations to examine the role of TCR signals in the differentiation of effector and memory CD8(+) T cells in response to infection in vivo. Our data support a model in which altered TCR signals can determine the rate of memory versus effector cell differentiation independent of initial T-cell expansion. Furthermore, we show that TCR signals sufficient to promote CD8(+) T-cell differentiation are different from those required to elicit inflammatory cytokine production.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Fosfoproteínas/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular , Proliferação de Células , Citometria de Fluxo , Ativação Linfocitária , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação/genética , Tirosina/genética
11.
Immunity ; 28(3): 359-69, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18342008

RESUMO

The adaptor protein SLP76 directs signaling downstream of the T cell receptor (TCR) and is essential for thymocyte development. SLP76 contains three N-terminal tyrosines that are critical for its function. To define the role of these residues in thymocyte development, we generated two lines of "knock-in" mice, one expressing a mutation in tyrosine 145 (Y145F) and a second harboring two point mutations at tyrosines 112 and 128 (Y112-128F). We show here that although thymocyte development requires both Y145- and Y112-128-generated signals, selection was more dependent upon Y145. Although several proximal TCR signaling events were defective in both mutant mice, phosphorylation of the guanine nucleotide exchange factor, Vav1, and activation of Itk-dependent pathways were differentially affected by mutations at Y112-128 and Y145, respectively. Analysis of mice expressing one Y145F and one Y112-128F allele revealed that these mutants could complement one another in trans, demonstrating cooperativity between two or more SLP76 molecules. Thus, the N-terminal tyrosines of SLP76 are required for thymocyte selection but can function on separate molecules to support TCR signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Diferenciação Celular/imunologia , Fosfoproteínas/imunologia , Transdução de Sinais/imunologia , Linfócitos T/citologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Citometria de Fluxo , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Mutantes , Mutação , Fosfoproteínas/química , Fosfoproteínas/genética , Receptores de Antígenos de Linfócitos T/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Tirosina/química , Tirosina/genética , Tirosina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...