Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Neuroinflammation ; 21(1): 135, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802931

RESUMO

Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and susceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation in age-related neurodegenerative disorders such as Alzheimer's disease; however, we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, and identify new avenues for neuroimmune modulation within the neurotrauma field.


Assuntos
Lesões Encefálicas Traumáticas , Meninges , Doenças Neuroinflamatórias , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Humanos , Animais , Meninges/imunologia , Meninges/patologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia , Neuroimunomodulação/fisiologia , Neuroimunomodulação/imunologia
3.
Radiother Oncol ; 194: 110185, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412905

RESUMO

BACKGROUND: Locally advanced, bulky, unresectable sarcomas cause significant tumour mass effects, leading to burdensome symptoms. We have developed a novel Partially Ablative Body Radiotherapy (PABR) technique that delivers a high, ablative dose to the tumour core and a low, palliative dose to its periphery aiming to increase overall tumour response without significantly increasing treatment toxicity. AIM: This study aims to report the safety and oncologic outcomes of PABR in patients with bulky, unresectable sarcomas. METHODS AND MATERIALS: A total of 18 patients with histologically proven sarcoma treated with PABR from January 2020 to October 2023 were retrospectively reviewed. The primary endpoints were symptomatic and structural response rates. Secondary endpoints were overall survival, freedom from local progression, freedom from distant progression, and acute and late toxicity rates. RESULTS: All patients had tumours ≥5 cm with a median tumour volume of 985 cc, and the most common symptom was pain. The median age is 72.5 years and 44.5 % were ECOG 2-3. The most common regimen used was 20 Gy in 5 fractions with an intratumoral boost dose of 50 Gy (83.3 %). After a median follow-up of 11 months, 88.9 % of patients exhibited a partial response with a mean absolute tumour volume reduction of 49.5 %. All symptomatic patients experienced symptom improvement. One-year OS, FFLP and FFDP were 61 %, 83.3 % and 34.8 %, respectively. There were no grade 3 or higher toxicities. CONCLUSION: PABR for bulky, unresectable sarcomas appears to be safe and may provide good symptomatic response, tumour debulking, and local control. Further study is underway.


Assuntos
Cuidados Paliativos , Sarcoma , Humanos , Sarcoma/radioterapia , Sarcoma/patologia , Sarcoma/cirurgia , Sarcoma/mortalidade , Masculino , Cuidados Paliativos/métodos , Feminino , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Carga Tumoral , Adulto , Dosagem Radioterapêutica
4.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38228367

RESUMO

Subconcussive head impacts are associated with the development of acute and chronic cognitive deficits. We recently reported that high-frequency head impact (HFHI) causes chronic cognitive deficits in mice through synaptic changes. To better understand the mechanisms underlying HFHI-induced memory decline, we used TRAP2/Ai32 transgenic mice to enable visualization and manipulation of memory engrams. We labeled the fear memory engram in male and female mice exposed to an aversive experience and subjected them to sham or HFHI. Upon subsequent exposure to natural memory recall cues, sham, but not HFHI, mice successfully retrieved fearful memories. In sham mice the hippocampal engram neurons exhibited synaptic plasticity, evident in amplified AMPA:NMDA ratio, enhanced AMPA-weighted tau, and increased dendritic spine volume compared with nonengram neurons. In contrast, although HFHI mice retained a comparable number of hippocampal engram neurons, these neurons did not undergo synaptic plasticity. This lack of plasticity coincided with impaired activation of the engram network, leading to retrograde amnesia in HFHI mice. We validated that the memory deficits induced by HFHI stem from synaptic plasticity impairments by artificially activating the engram using optogenetics and found that stimulated memory recall was identical in both sham and HFHI mice. Our work shows that chronic cognitive impairment after HFHI is a result of deficiencies in synaptic plasticity instead of a loss in neuronal infrastructure, and we can reinstate a forgotten memory in the amnestic brain by stimulating the memory engram. Targeting synaptic plasticity may have therapeutic potential for treating memory impairments caused by repeated head impacts.


Assuntos
Amnésia , Memória , Masculino , Camundongos , Feminino , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Camundongos Transgênicos
5.
Front Neurosci ; 17: 1210175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588516

RESUMO

Traumatic Brain Injury (TBI) is a major cause of disability and mortality, particularly among the elderly, yet our mechanistic understanding of how age renders the post-traumatic brain vulnerable to poor clinical outcomes and susceptible to neurological disease remains poorly understood. It is well established that dysregulated and sustained immune responses contribute to negative outcomes after TBI, however our understanding of the interactions between central and peripheral immune reservoirs is still unclear. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in healthy and disease settings. It has been previously shown that disruption of this system exacerbates inflammation in age related neurodegenerative disorders such as Alzheimer's disease, however we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. Here, we examine the meningeal tissue and its response to brain injury in young (3-months) and aged (18-months) mice. Utilizing a bioinformatic approach, high-throughput RNA sequencing demonstrates alterations in the meningeal transcriptome at sub-acute (7-days) and chronic (1 month) timepoints after injury. We find that age alone chronically exacerbates immunoglobulin production and B cell responses. After TBI, adaptive immune response genes are up-regulated in a temporal manner, with genes involved in T cell responses elevated sub-acutely, followed by increases in B cell related genes at chronic time points after injury. Pro-inflammatory cytokines are also implicated as contributing to the immune response in the meninges, with ingenuity pathway analysis identifying interferons as master regulators in aged mice compared to young mice following TBI. Collectively these data demonstrate the temporal series of meningeal specific signatures, providing insights into how age leads to worse neuroinflammatory outcomes in TBI.

6.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546993

RESUMO

Background: Surgery and/or platinum-based chemoradiation remain standard of care for patients with head and neck squamous cell carcinoma (HNSCC). While these therapies are effective in a subset of patients, a substantial proportion experience recurrence or treatment resistance. As cisplatin mediates cytotoxicity through oxidative stress while polyamines play a role in redox regulation, we posited that combining cisplatin with polyamine transport inhibitor, AMXT-1501, would increase oxidative stress and tumor cell death in HNSCC cells. Methods: Cell proliferation was measured in syngeneic mouse HNSCC cell lines treated with cisplatin ± AMXT-1501. Synergy was determined by administering cisplatin and AMXT-1501 at a ratio of 1:10 to cancer cells in vitro . Cancer cells were transferred onto mouse flanks to test the efficacy of treatments in vivo . Reactive oxygen species (ROS) were measured. Cellular apoptosis was measured with flow cytometry using Annexin V/PI staining. High-performance liquid chromatography (HPLC) was used to quantify polyamines in cell lines. Cell viability and ROS were measured in the presence of exogenous cationic amino acids. Results: The combination of cisplatin and AMXT-1501 synergize in vitro on HNSCC cell lines. In vivo combination treatment resulted in tumor growth inhibition greater than either treatment individually. The combination treatment increased ROS production and induced apoptotic cell death. HPLC revealed the synergistic mechanism was independent of intracellular polyamine levels. Supplementation of cationic amino acids partially rescued cancer cell viability and reduced ROS. Conclusion: AMXT-1501 enhances the cytotoxic effects of cisplatin in vitro and in vivo in aggressive HNSCC cell lines through a polyamine-independent mechanism.

7.
PLoS One ; 18(7): e0288363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440485

RESUMO

The pathophysiological changes that occur after traumatic brain injury (TBI) can lead to the development of post-traumatic epilepsy, a life-long complication of brain trauma. The etiology of post-traumatic epilepsy remains unknown, but TBI brains exhibit an abnormal excitatory / inhibitory balance. In this study, we examine how brain injury alters susceptibility to chemically-induced seizures in C57Bl/6J mice, and if pharmacological enhancement of glutamate transporters can reduce chronic post-traumatic seizures. We found that controlled cortical impact (CCI) mice display delayed susceptibility to pentylenetetrazol (PTZ)-induced seizures. While CCI mice have no change in seizure susceptibility at 7d post-injury (dpi), at 70dpi they have reduced latency to PTZ-induced seizure onset, higher seizure frequency and longer seizure duration. Quantification of glutamate transporter mRNA showed that levels of Scl1a2 and Scl1a3 mRNA were increased at 7dpi, but significantly decreased at 70dpi. To test if increased levels of glutamate transporters can ameliorate delayed-onset seizure susceptibility in TBI mice, we exposed a new cohort of mice to CCI and administered ceftriaxone (200mg/kg/day) for 14d from 55-70dpi. We found that ceftriaxone significantly increased Scl1a2 and Scl1a3 in CCI mouse brain at 70dpi, and prevented the susceptibility of CCI mice to PTZ-induced seizures. This study demonstrates cortical impact can induce a delayed-onset seizure phenotype in mice. Delayed (55dpi) ceftriaxone treatment enhances glutamate transporter mRNA in the CCI brain, and reduces PTZ-induced seizures in CCI mice.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Camundongos , Animais , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Tempo para o Tratamento , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/complicações , Pentilenotetrazol/toxicidade , Camundongos Endogâmicos C57BL , Glutamatos , Modelos Animais de Doenças
8.
Neuroinformatics ; 21(3): 501-516, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37294503

RESUMO

Traumatic brain injury (TBI) and repetitive head impacts can result in a wide range of neurological symptoms. Despite being the most common neurological disorder in the world, repeat head impacts and TBI do not have any FDA-approved treatments. Single neuron modeling allows researchers to extrapolate cellular changes in individual neurons based on experimental data. We recently characterized a model of high frequency head impact (HFHI) with a phenotype of cognitive deficits associated with decreases in neuronal excitability of CA1 neurons and synaptic changes. While the synaptic changes have been interrogated in vivo, the cause and potential therapeutic targets of hypoexcitability following repetitive head impacts are unknown. Here, we generated in silico models of CA1 pyramidal neurons from current clamp data of control mice and mice that sustained HFHI. We use a directed evolution algorithm with a crowding penalty to generate a large and unbiased population of plausible models for each group that approximated the experimental features. The HFHI neuron model population showed decreased voltage gated sodium conductance and a general increase in potassium channel conductance. We used partial least squares regression analysis to identify combinations of channels that may account for CA1 hypoexcitability after HFHI. The hypoexcitability phenotype in models was linked to A- and M-type potassium channels in combination, but not by any single channel correlations. We provide an open access set of CA1 pyramidal neuron models for both control and HFHI conditions that can be used to predict the effects of pharmacological interventions in TBI models.


Assuntos
Neurônios , Canais de Potássio , Camundongos , Animais , Canais de Potássio/farmacologia , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia
9.
Biosensors (Basel) ; 13(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36979543

RESUMO

Urinary chloride concentration is a valuable health metric that can aid in the early detection of serious conditions, such as acid base disorders, acute heart failure, and incidences of acute renal failure in the intensive care unit. Physiologically, urinary chloride levels frequently change and are difficult to measure, involving time-consuming and inconvenient lab testing. Thus, near real-time simple sensors are needed to quickly provide actionable data to inform diagnostic and treatment decisions that affect health outcomes. Here, we introduce a chronopotentiometric sensor that utilizes commercially available screen-printed electrodes to accurately quantify clinically relevant chloride concentrations (5-250 mM) in seconds, with no added reagents or electrode surface modification. Initially, the sensor's performance was optimized through the proper selection of current density at a specific chloride concentration, using electrical response data in conjunction with scanning electron microscopy. We developed a unique swept current density algorithm to resolve the entire clinically relevant chloride concentration range, and the chloride sensors can be reliably reused for chloride concentrations less than 50 mM. Lastly, we explored the impact of pH, temperature, conductivity, and additional ions (i.e., artificial urine) on the sensor signal, in order to determine sensor feasibility in complex biological samples. This study provides a path for further development of a portable, near real-time sensor for the quantification of urinary chloride.


Assuntos
Cloretos , Técnicas Eletroquímicas , Eletrodos , Microscopia Eletrônica de Varredura
10.
Methods Protoc ; 5(5)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36287049

RESUMO

In aging, the brain is more vulnerable to injury and neurodegenerative disease, but the mechanisms responsible are largely unknown. Evidence now suggests that neuroinflammation, mediated by resident brain astrocyte and microglia populations, are key players in the generation of inflammatory responses and may influence both age related processes and the initiation/progression of neurodegeneration. Consequently, targeting these cell types individually and collectively may aid in the development of novel disease-modifying therapies. We have optimized and characterized a protocol for the effective sequential isolation of both microglia and astrocytes from the adult mouse brain in young and aged mice. We demonstrate a technique for the sequential isolation of these immune cells by using magnetic beads technology, optimized to increase yield and limit potential artifacts in downstream transcriptomic applications, including RNA-sequencing pipelines. This technique is versatile, cost-effective, and reliable for the study of responses within the same biological context, simultaneously being advantageous in reducing mice numbers required to assess cellular responses in normal and age-related pathological conditions.

11.
Cancer Res Commun ; 2(7): 639-652, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36052016

RESUMO

Metabolic features of the tumor microenvironment (TME) antagonize anti-tumor immunity. We hypothesized that T cell infiltrated tumors with a known antigen should exhibit superior clinical outcomes, though some fare worse given unfavorable metabolic features leveraging T cell-infiltrated (Thi), human papillomavirus-related (HPV+) head and neck squamous cell carcinomas (HNSC) to test this hypothesis. Expression of 2,520 metabolic genes were analyzed among Thi HPV+ HNSCs stratified by high-risk molecular subtype. RNAseq data from The Cancer Genome Atlas (TCGA; 10 cancer types), single cell RNAseq data, and an immunotherapy-treated melanoma cohort were used to test the association between metabolic gene expression and clinical outcomes and contribution of tumor versus stromal cells to metabolic gene expression. Polyamine (PA) metabolism genes were overexpressed in high-risk, Thi HPV+ HNSCs. Genes involved in PA biosynthesis and transport were associated with T cell infiltration, recurrent or persistent cancer, overall survival status, primary site, molecular subtype, and MYC genomic alterations. PA biogenesis gene sets were associated with tumor intrinsic features while myeloid cells in HPV+ HNSCs were enriched in PA catabolism, regulatory, transport, putrescine, and spermidine gene set expression. PA gene set expression also correlated with IFNγ or cytotoxic T cell ssGSEA scores across TCGA tumor types. PA transport ssGSEA scores were associated with poor survival whereas putrescine ssGSEA scores portended better survival for several tumor types. Thi melanomas enriched in PA synthesis or combined gene set expression exhibited worse anti-PD-1 responses. These data address hurdles to anti-tumor immunity warranting further investigation of divergent polyamine metabolism in the TME.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Prognóstico , Infecções por Papillomavirus/genética , Putrescina , Imunoterapia , Microambiente Tumoral/genética
12.
Biology (Basel) ; 11(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-36101412

RESUMO

Traumatic brain injury (TBI) is a significant risk factor for the development of sleep and circadian rhythm impairments. In this study we compare the circadian rhythms and sleep patterns in the high-frequency head impact (HFHI) and controlled cortical impact (CCI) mouse models of TBI. These mouse models have different injury mechanisms key differences of pathology in brain regions controlling circadian rhythms and EEG wave generation. We found that both HFHI and CCI caused dysregulation in the diurnal expression of core circadian genes (Bmal1, Clock, Per1,2, Cry1,2) at 24 h post-TBI. CCI mice had reduced locomotor activity on running wheels in the first 7 d post-TBI; however, both CCI and HFHI mice were able to maintain circadian behavior cycles even in the absence of light cues. We used implantable EEG to measure sleep cycles and brain activity and found that there were no differences in the time spent awake, in NREM or REM sleep in either TBI model. However, in the sleep states, CCI mice have reduced delta power in NREM sleep and reduced theta power in REM sleep at 7 d post-TBI. Our data reveal that different types of brain trauma can result in distinct patterns of circadian and sleep disruptions and can be used to better understand the etiology of sleep disorders after TBI.

13.
Biomicrofluidics ; 16(4): 044106, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35935121

RESUMO

Microfluidic devices are typically fabricated in an expensive, multistep process (e.g., photolithography, etching, and bonding). Additive manufacturing (AM) has emerged as a revolutionary technology for simple and inexpensive fabrication of monolithic structures-enabling microfluidic designs that are challenging, if not impossible, to make with existing fabrication techniques. Here, we introduce volumetric stereolithography (vSLA), an AM method in which polymerization is constrained to specific heights within a resin vat, allowing layer-by-layer fabrication without a moving platform. vSLA uses an existing dual-wavelength chemistry that polymerizes under blue light (λ = 458 nm) and inhibits polymerization under UV light (λ = 365 nm). We apply vSLA to fabricate microfluidic channels with different spatial and vertical geometries in less than 10 min. Channel heights ranged from 400 µm to 1 mm and could be controlled with an optical dose, which is a function of blue and UV light intensities and exposure time. Oxygen in the resin was found to significantly increase the amount of dose required for curing (i.e., polymerization to a gelled state), and we recommend that an inert vSLA system is used for rapid and reproducible microfluidic fabrication. Furthermore, we recommend polymerizing far beyond the gel point to form more rigid structures that are less susceptible to damage during post-processing, which can be done by simultaneously increasing the blue and UV light absorbance of the resin with light intensities. We believe that vSLA can simplify the fabrication of complex multilevel microfluidic devices, extending microfluidic innovation and availability to a broader community.

14.
Clin Colorectal Cancer ; 21(2): e102-e112, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34799240

RESUMO

BACKGROUND: To analyze the long-term outcomes and prognostic value of hematological parameters in anal cancer patients receiving intensity-modulated radiation therapy (IMRT). MATERIALS: Hospital records of consecutive patients with anal squamous cell carcinoma who received curative-intent IMRT according to a standardized contouring protocol between 2010 and 2020 were reviewed. Locoregional failure-free survival (LRFS), distant metastasis-free survival (DMFS), progression-free survival (PFS), and overall survival (OS) were estimated using the Kaplan-Meier method. Coverage of locoregional recurrences by the initial IMRT volumes were assessed. The prognostic value of pretreatment blood counts for PFS and OS were determined using Cox regression analysis. RESULTS: A total of 166 patients were analyzed with a median follow-up of 3.3 years. Forty-six percent and 54% of patients had Stage I-II and IIIA-B cancers, respectively. The 5-year LRFS, DMFS, PFS and OS were 81%, 89%, 65% and 76% respectively. Grade ≥ 3 toxicity occurred in 5% of patients. Of all patients who relapsed, 70% had only locoregional recurrence as first site of failure. Ninety percent of locoregional recurrences were in-field. Hemoglobin, neutrophil and platelet counts were associated with PFS on univariable analysis, but only cancer stage and p16 status remained prognostic on multivariable analysis. Patients with more advanced cancer stages also had higher baseline neutrophil counts. Performance status and neutrophil counts were prognostic for OS on multivariable analysis. CONCLUSION: This study affirms the long-term efficacy and safety of IMRT. Treatment resistance, rather than radiation geographic miss, is a major issue underpinning locoregional recurrences. Pretreatment blood counts were not validated to be independently prognostic for disease recurrence.


Assuntos
Neoplasias do Ânus , Radioterapia de Intensidade Modulada , Neoplasias do Ânus/radioterapia , Intervalo Livre de Doença , Humanos , Recidiva Local de Neoplasia , Prognóstico , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
15.
Biosensors (Basel) ; 11(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34562910

RESUMO

Traumatic brain injury (TBI) is a leading cause of global morbidity and mortality, partially due to the lack of sensitive diagnostic methods and efficacious therapies. Panels of protein biomarkers have been proposed as a way of diagnosing and monitoring TBI. To measure multiple TBI biomarkers simultaneously, we present a variable height microfluidic device consisting of a single channel that varies in height between the inlet and outlet and can passively multiplex bead-based immunoassays by trapping assay beads at the point where their diameter matches the channel height. We developed bead-based quantum dot-linked immunosorbent assays (QLISAs) for interleukin-6 (IL-6), glial fibrillary acidic protein (GFAP), and interleukin-8 (IL-8) using DynabeadsTM M-450, M-270, and MyOneTM, respectively. The IL-6 and GFAP QLISAs were successfully multiplexed using a variable height channel that ranged in height from ~7.6 µm at the inlet to ~2.1 µm at the outlet. The IL-6, GFAP, and IL-8 QLISAs were also multiplexed using a channel that ranged in height from ~6.3 µm at the inlet to ~0.9 µm at the outlet. Our system can keep pace with TBI biomarker discovery and validation, as additional protein biomarkers can be multiplexed simply by adding in antibody-conjugated beads of different diameters.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico , Imunoensaio , Lesões Encefálicas Traumáticas/imunologia , Proteína Glial Fibrilar Ácida , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas
16.
Biosensors (Basel) ; 11(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34562909

RESUMO

Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas , Humanos
17.
Medicine (Baltimore) ; 100(24): e26371, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34128896

RESUMO

ABSTRACT: Most patients with coronavirus disease 2019 (COVID-19) have mild to moderate illness not requiring hospitalization. However, no study has detailed the evolution of symptoms in the first month of illness.At our institution, we conducted remote (telephone and video) visits for all adult outpatients diagnosed with COVID-19 within 24 h of a positive nasopharyngeal polymerase chain test for SARS-CoV-2. We repeated regular video visits at 7, 14, and 28 days after the positive test, retrospectively reviewed the prospective data collected in the remote visits, and constructed a week by week profile of clinical illness, through week 4 of illness.We reviewed the courses of 458 symptomatic patients diagnosed between March 12, 2020, and June 22, 2020, and characterized their weekly courses. Common initial symptoms included fever, headache, cough, and chest pain, which frequently persisted through week 3 or longer. Upper respiratory or gastrointestinal symptoms were much shorter lived, present primarily in week 1. Anosmia/ageusia peaked in weeks 2 to 3. Emergency department visits were frequent, with 128 visits in the 423 patients who were not hospitalized and 48 visits among the 35 outpatients (7.6%) who were eventually hospitalized (2 subsequently died). By the fourth week, 28.9% said their illness had completely resolved. After the 4-week follow up, 20 (4.7%) of the 423 nonhospitalized patients had further medical evaluation and management for subacute or chronic COVID-19 symptoms.Mild to moderate outpatient COVID-19 is a prolonged illness, with evolving symptoms commonly lasting into the fourth week of illness.


Assuntos
Assistência Ambulatorial , COVID-19/complicações , COVID-19/terapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anosmia/etiologia , COVID-19/diagnóstico , Dor no Peito/etiologia , Tosse/etiologia , Dispneia/etiologia , Serviço Hospitalar de Emergência , Fadiga/etiologia , Feminino , Febre/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mialgia/etiologia , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Resultado do Tratamento , Adulto Jovem
18.
Nat Commun ; 12(1): 2613, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972519

RESUMO

Repeated head impact exposure can cause memory and behavioral impairments. Here, we report that exposure to non-damaging, but high frequency, head impacts can alter brain function in mice through synaptic adaptation. High frequency head impact mice develop chronic cognitive impairments in the absence of traditional brain trauma pathology, and transcriptomic profiling of mouse and human chronic traumatic encephalopathy brain reveal that synapses are strongly affected by head impact. Electrophysiological analysis shows that high frequency head impacts cause chronic modification of the AMPA/NMDA ratio in neurons that underlie the changes to cognition. To demonstrate that synaptic adaptation is caused by head impact-induced glutamate release, we pretreated mice with memantine prior to head impact. Memantine prevents the development of the key transcriptomic and electrophysiological signatures of high frequency head impact, and averts cognitive dysfunction. These data reveal synapses as a target of high frequency head impact in human and mouse brain, and that this physiological adaptation in response to head impact is sufficient to induce chronic cognitive impairment in mice.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Cognição , Neurônios/patologia , Sinapses/metabolismo , Sinapses/patologia , Transcriptoma/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Escala de Avaliação Comportamental , Lesões Encefálicas Traumáticas/genética , Cognição/efeitos dos fármacos , Disfunção Cognitiva/patologia , Eletrofisiologia , Ontologia Genética , Ácido Glutâmico/metabolismo , Memantina/administração & dosagem , Camundongos , Microglia/metabolismo , Família Multigênica , Plasticidade Neuronal/genética , Neurônios/citologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/genética , Proteínas tau/metabolismo
19.
Sci Adv ; 7(8)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597238

RESUMO

Glioblastoma is characterized by the robust infiltration of immunosuppressive tumor-associated myeloid cells (TAMCs). It is not fully understood how TAMCs survive in the acidic tumor microenvironment to cause immunosuppression in glioblastoma. Metabolic and RNA-seq analysis of TAMCs revealed that the arginine-ornithine-polyamine axis is up-regulated in glioblastoma TAMCs but not in tumor-infiltrating CD8+ T cells. Active de novo synthesis of highly basic polyamines within TAMCs efficiently buffered low intracellular pH to support the survival of these immunosuppressive cells in the harsh acidic environment of solid tumors. Administration of difluoromethylornithine (DFMO), a clinically approved inhibitor of polyamine generation, enhanced animal survival in immunocompetent mice by causing a tumor-specific reduction of polyamines and decreased intracellular pH in TAMCs. DFMO combination with immunotherapy or radiotherapy further enhanced animal survival. These findings indicate that polyamines are used by glioblastoma TAMCs to maintain normal intracellular pH and cell survival and thus promote immunosuppression during tumor evolution.


Assuntos
Glioblastoma , Animais , Linfócitos T CD8-Positivos/metabolismo , Sobrevivência Celular , Eflornitina/metabolismo , Eflornitina/farmacologia , Glioblastoma/metabolismo , Concentração de Íons de Hidrogênio , Terapia de Imunossupressão , Camundongos , Células Mieloides/metabolismo , Poliaminas/metabolismo , Microambiente Tumoral
20.
Nat Commun ; 12(1): 971, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579942

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an incurable malignant childhood brain tumor, with no active systemic therapies and a 5-year survival of less than 1%. Polyamines are small organic polycations that are essential for DNA replication, translation and cell proliferation. Ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme in polyamine synthesis, is irreversibly inhibited by difluoromethylornithine (DFMO). Herein we show that polyamine synthesis is upregulated in DIPG, leading to sensitivity to DFMO. DIPG cells compensate for ODC1 inhibition by upregulation of the polyamine transporter SLC3A2. Treatment with the polyamine transporter inhibitor AMXT 1501 reduces uptake of polyamines in DIPG cells, and co-administration of AMXT 1501 and DFMO leads to potent in vitro activity, and significant extension of survival in three aggressive DIPG orthotopic animal models. Collectively, these results demonstrate the potential of dual targeting of polyamine synthesis and uptake as a therapeutic strategy for incurable DIPG.


Assuntos
Transporte Biológico/efeitos dos fármacos , Neoplasias do Tronco Encefálico/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Poliaminas/metabolismo , Poliaminas/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Transportadores de Ácidos Dicarboxílicos , Modelos Animais de Doenças , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Transporte da Membrana Mitocondrial , Ornitina Descarboxilase/efeitos dos fármacos , Ornitina Descarboxilase/metabolismo , Poliaminas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...