Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Meas Sci Technol ; 29(11)2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33442201

RESUMO

Femtosecond laser electronic excitation tagging (FLEET) velocimetry is characterized for the first time at high-pressure, low-temperature conditions. FLEET signal intensity and signal lifetime data are examined for their thermodynamic dependences; temperatures range from 89 K to 275 K while pressures are varied from 85 kPa to 400 kPa. The FLEET signal intensity is found to scale linearly with the flow density. An inverse density dependence is observed in the FLEET signal lifetime data, with little independent sensitivity to the other thermodynamic conditions apparent. FLEET velocimetry is demonstrated in the NASA Langley 0.3-m Transonic Cryogenic Tunnel. Velocity measurements are made over the entire operational envelope: Mach numbers from 0.2 to 0.75, total (stagnation) temperatures from 100 K to 280 K, and total pressures from 100 kPa to 400 kPa. The velocity measurement accuracy is assessed over this domain of conditions. Measurement errors below 1.15 percent are typical, with slightly decreasing accuracy as temperatures are decreased. Assessment of the measurement precision finds a zero-velocity precision of 0.4 m/s. The precision is observed to have a weak temperature dependence as well, likely a result of the shorter lifetimes experienced at higher densities. The velocity dynamic range is found to have a nominal value of 650. Finally the spatial resolution of the measurements is found to be a dominated by the physical size of the FLEET signal and advective motion. The transverse spatial resolution is found to be 1 mm, while the streamwise spatial resolution is dependent on velocity with a minimum of 2 mm and a maximum of 3.3 mm.

2.
Meas Sci Technol ; 29(11)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32042220

RESUMO

Picosecond laser electronic excitation tagging (PLEET) is implemented in a large-scale wind tunnel for the first time. High-speed, unseeded velocimetry is performed in the NASA Langley 0.3-m Transonic Cryogenic Tunnel; repetition rates up to 25 kHz are tested. Velocity measurements are assessed for accuracy and precision. Measurement errors vary in the range of 0.6-1.2%, while the instrument precision is found to lie between 1.2 m/s and 2 m/s and exhibits little variation over the full operating range of the facility. An examination of the signal intensity reveals little to no thermodynamic dependence, and the signal lifetimes exhibit an inverse dependence on both pressure and temperature. The PLEET signal is demonstrated to be largely unaffected by buoyancy despite the large temperature rise. The velocity dynamic range of the measurements is found to be a factor of at least 200 in these experiments with the capacity to measure much higher velocities as well. The spatial resolution of the velocity measurements is found to lie between 2 and 2.7 mm, and the maximum frequency response is 12.5 kHz with the ability to resolve up to 50 kHz with the current measurement system. Overall measurement uncertainties in the streamwise velocity are found to lie between 4% and 4.8% for high to low velocities, while the uncertainty in the transverse velocity is less than 6 m/s. The measurement uncertainties are found to be dominated by systematic errors in the calibration procedure, which could be improved in future experiments.

3.
AIAA J ; 55(12): 4142-4154, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33479544

RESUMO

Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0°, 3.5°, and 7°. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack. Velocity measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty as they relate to the present experiments. Measurement precisions as low as 1 m/s were observed, while the velocity dynamic range was found to be nearly a factor of 500. The spatial resolution of between 1 mm and 5 mm was found to be primarily limited by the FLEET spot size and advection of the flow. Overall measurement uncertainties ranged from 3 to 4 percent.

4.
Exp Fluids ; 592017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33867650

RESUMO

A molecular tagging velocity (MTV) technique is developed to non-intrusively measure velocity in an integral effect test (IET) facility simulating a high temperature helium-cooled nuclear reactor in accident scenarios. In these scenarios, the velocities are expected to be low, on the order of 1 m/s or less, which forces special requirements on the MTV tracer selection. Nitrous oxide (N2O) is identified as a suitable seed gas to generate NO tracers capable of probing the flow over a large range of pressure, temperature, and flow velocity. The performance of N2O-MTV is assessed in the laboratory at temperature and pressure ranging from 295 to 781 K and 1 to 3 atm. MTV signal improves with a temperature increase, but decreases with a pressure increase. Velocity precision down to 0.004 m/s is achieved with a probe time of 40 ms at ambient pressure and temperature. Measurement precision is limited by tracer diffusion, and absorption of the tag laser beam by the seed gas. Processing by cross-correlation of single shot images with high signal-to-noise ratio reference images improves the precision by about 10% compared to traditional single shot image correlations. The instrument is then deployed to the IET facility. Challenges associated with heat, vibrations, safety, beam delivery, and imaging are addressed in order to successfully operate this sensitive instrument in-situ. Data are presented for an isothermal depressurized conduction cool-down. Velocity profiles from MTV reveal a complex flow transient driven by buoyancy, diffusion, and instability taking place over short (<1 s) and long (>30 min) time-scales at sub-meter per second speed. The precision of the in-situ results is estimated at 0.027, 0.0095, and 0.006 m/s for a probe time of 5, 15, and 35 ms, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...