Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 177(4): 970-985.e20, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031000

RESUMO

Prolonged behavioral challenges can cause animals to switch from active to passive coping strategies to manage effort-expenditure during stress; such normally adaptive behavioral state transitions can become maladaptive in psychiatric disorders such as depression. The underlying neuronal dynamics and brainwide interactions important for passive coping have remained unclear. Here, we develop a paradigm to study these behavioral state transitions at cellular-resolution across the entire vertebrate brain. Using brainwide imaging in zebrafish, we observed that the transition to passive coping is manifested by progressive activation of neurons in the ventral (lateral) habenula. Activation of these ventral-habenula neurons suppressed downstream neurons in the serotonergic raphe nucleus and caused behavioral passivity, whereas inhibition of these neurons prevented passivity. Data-driven recurrent neural network modeling pointed to altered intra-habenula interactions as a contributory mechanism. These results demonstrate ongoing encoding of experience features in the habenula, which guides recruitment of downstream networks and imposes a passive coping behavioral strategy.


Assuntos
Adaptação Psicológica/fisiologia , Habenula/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Habenula/metabolismo , Larva , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleos da Rafe/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina , Estresse Fisiológico/fisiologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
Cell ; 171(6): 1411-1423.e17, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29103613

RESUMO

Internal states of the brain profoundly influence behavior. Fluctuating states such as alertness can be governed by neuromodulation, but the underlying mechanisms and cell types involved are not fully understood. We developed a method to globally screen for cell types involved in behavior by integrating brain-wide activity imaging with high-content molecular phenotyping and volume registration at cellular resolution. We used this method (MultiMAP) to record from 22 neuromodulatory cell types in behaving zebrafish during a reaction-time task that reports alertness. We identified multiple monoaminergic, cholinergic, and peptidergic cell types linked to alertness and found that activity in these cell types was mutually correlated during heightened alertness. We next recorded from and controlled homologous neuromodulatory cells in mice; alertness-related cell-type dynamics exhibited striking evolutionary conservation and modulated behavior similarly. These experiments establish a method for unbiased discovery of cellular elements underlying behavior and reveal an evolutionarily conserved set of diverse neuromodulatory systems that collectively govern internal state.


Assuntos
Comportamento Animal , Encéfalo/citologia , Encéfalo/fisiologia , Neurônios/citologia , Animais , Mapeamento Encefálico , Larva/citologia , Larva/fisiologia , Camundongos , Vias Neurais , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
3.
Sci Rep ; 7(1): 5899, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724969

RESUMO

Three-dimensional tissue-structural relationships are not well captured by typical thin-section histology, posing challenges for the study of tissue physiology and pathology. Moreover, while recent progress has been made with intact methods for clearing, labeling, and imaging whole organs such as the mature brain, these approaches are generally unsuitable for soft, irregular, and heterogeneous tissues that account for the vast majority of clinical samples and biopsies. Here we develop a biphasic hydrogel methodology, which along with automated analysis, provides for high-throughput quantitative volumetric interrogation of spatially-irregular and friable tissue structures. We validate and apply this approach in the examination of a variety of developing and diseased tissues, with specific focus on the dynamics of normal and pathological pancreatic innervation and development, including in clinical samples. Quantitative advantages of the intact-tissue approach were demonstrated compared to conventional thin-section histology, pointing to broad applications in both research and clinical settings.


Assuntos
Doença , Imageamento Tridimensional/métodos , Organogênese , Animais , Feminino , Humanos , Hidrogéis/química , Camundongos Endogâmicos C57BL , Crista Neural/citologia , Sistemas Neurossecretores/citologia , Pâncreas/citologia
4.
Sci Rep ; 7: 41528, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139691

RESUMO

RFamide neuropeptide VF (NPVF) is expressed by neurons in the hypothalamus and has been implicated in nociception, but the circuit mechanisms remain unexplored. Here, we studied the structural and functional connections from NPVF neurons to downstream targets in the context of nociception, using novel transgenic lines, optogenetics, and calcium imaging in behaving larval zebrafish. We found a specific projection from NPVF neurons to serotonergic neurons in the ventral raphe nucleus (vRN). We showed NPVF neurons and vRN are suppressed and excited by noxious stimuli, respectively. We combined optogenetics with calcium imaging and pharmacology to demonstrate that stimulation of NPVF cells suppresses neuronal activity in vRN. During noxious stimuli, serotonergic neurons activation was due to a suppression of an inhibitory NPVF-ventral raphe peptidergic projection. This study reveals a novel NPVF-vRN functional circuit modulated by noxious stimuli in vertebrates.


Assuntos
Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Nociceptividade , Núcleos da Rafe/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Neurônios/metabolismo , Neuropeptídeos/química , Serotonina/metabolismo
5.
Cell ; 163(7): 1796-806, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687363

RESUMO

The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here, we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca(2+) imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function.


Assuntos
Microscopia/métodos , Sistema Nervoso/citologia , Animais , Encéfalo/citologia , Processamento de Imagem Assistida por Computador/métodos , Larva/citologia , Camundongos , Neuritos/ultraestrutura , Peixe-Zebra/crescimento & desenvolvimento
6.
Angew Chem Int Ed Engl ; 48(27): 4944-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19301344

RESUMO

Special agents for protein capture: Iterative in situ click chemistry (see scheme for the tertiary ligand screen) and the one-bead-one-compound method for the creation of a peptide library enable the fragment-based assembly of selective high-affinity protein-capture agents. The resulting ligands are water-soluble and stable chemically, biochemically, and thermally. They can be produced in gram quantities through copper(I)-catalyzed cycloaddition.


Assuntos
Biblioteca de Peptídeos , Proteínas/química , Triazóis/química , Anticorpos/química , Catálise , Cobre/química , Ligantes , Peptídeos/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...