Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676573

RESUMO

Drug-induced liver injury (DILI) represents a major issue for pharmaceutical companies, being a potential cause of black-box warnings on marketed pharmaceuticals, or drug withdrawal from the market. Lipid accumulation in the liver also referred to as steatosis, may be secondary to impaired mitochondrial fatty acid oxidation (mtFAO). However, an overall causal relationship between drug-induced mtFAO inhibition and the occurrence of steatosis in patients has not yet been established with a high number of pharmaceuticals. Hence, 32 steatogenic and 13 non-steatogenic drugs were tested for their ability to inhibit mtFAO in isolated mouse liver mitochondria. To this end, mitochondrial respiration was measured with palmitoyl-L-carnitine, palmitoyl-CoA + L-carnitine, or octanoyl-L-carnitine. This mtFAO tri-parametric assay was able to predict the occurrence of steatosis in patients with a sensitivity and positive predictive value above 88%. To get further information regarding the mechanism of drug-induced mtFAO impairment, mitochondrial respiration was also measured with malate/glutamate or succinate. Drugs such as diclofenac, methotrexate and troglitazone could inhibit mtFAO secondary to an impairment of the mitochondrial respiratory chain, while dexamethasone, olanzapine and zidovudine appeared to impair mtFAO directly. Mitochondrial swelling, transmembrane potential and production of reactive oxygen species were also assessed for all compounds. Only the steatogenic drugs amiodarone, ketoconazole, lovastatin and toremifene altered all these 3 mitochondrial parameters. In conclusion, our tri-parametric mtFAO assay could be useful in predicting the occurrence of steatosis in patients. The combination of this assay with other mitochondrial parameters could also help to better understand the mechanism of drug-induced mtFAO inhibition.

2.
Aging Cell ; 20(8): e13421, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34278707

RESUMO

In the context of obesity, senescent cells accumulate in white adipose tissue (WAT). The cellular underpinnings of WAT senescence leading to insulin resistance are not fully elucidated. The objective of the current study was to evaluate the presence of WAT senescence early after initiation of high-fat diet (HFD, 1-10 weeks) in 5-month-old male C57BL/6J mice and the potential role of energy metabolism. We first showed that WAT senescence occurred 2 weeks after HFD as evidenced in whole WAT by increased senescence-associated ß-galactosidase activity and cyclin-dependent kinase inhibitor 1A and 2A expression. WAT senescence affected various WAT cell populations, including preadipocytes, adipose tissue progenitors, and immune cells, together with adipocytes. WAT senescence was associated with higher glycolytic and mitochondrial activity leading to enhanced ATP content in HFD-derived preadipocytes, as compared with chow diet-derived preadipocytes. One-month daily exercise, introduced 5 weeks after HFD, was an effective senostatic strategy, since it reversed WAT cellular senescence, while reducing glycolysis and production of ATP. Interestingly, the beneficial effect of exercise was independent of body weight and fat mass loss. We demonstrated that WAT cellular senescence is one of the earliest events occurring after HFD initiation and is intimately linked to the metabolic state of the cells. Our data uncover a critical role for HFD-induced elevated ATP as a local danger signal inducing WAT senescence. Exercise exerts beneficial effects on adipose tissue bioenergetics in obesity, reversing cellular senescence, and metabolic abnormalities.


Assuntos
Trifosfato de Adenosina/metabolismo , Tecido Adiposo/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Animais , Masculino , Camundongos
3.
Cell Biol Toxicol ; 37(2): 151-175, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32535746

RESUMO

Steatosis is a liver lesion reported with numerous pharmaceuticals. Prior studies showed that severe impairment of mitochondrial fatty acid oxidation (mtFAO) constantly leads to lipid accretion in liver. However, much less is known about the mechanism(s) of drug-induced steatosis in the absence of severe mitochondrial dysfunction, although previous studies suggested the involvement of mild-to-moderate inhibition of mtFAO, increased de novo lipogenesis (DNL), and impairment of very low-density lipoprotein (VLDL) secretion. The objective of our study, mainly carried out in human hepatoma HepaRG cells, was to investigate these 3 mechanisms with 12 drugs able to induce steatosis in human: amiodarone (AMIO, used as positive control), allopurinol (ALLO), D-penicillamine (DPEN), 5-fluorouracil (5FU), indinavir (INDI), indomethacin (INDO), methimazole (METHI), methotrexate (METHO), nifedipine (NIF), rifampicin (RIF), sulindac (SUL), and troglitazone (TRO). Hepatic cells were exposed to drugs for 4 days with concentrations decreasing ATP level by less than 30% as compared to control and not exceeding 100 × Cmax. Among the 12 drugs, AMIO, ALLO, 5FU, INDI, INDO, METHO, RIF, SUL, and TRO induced steatosis in HepaRG cells. AMIO, INDO, and RIF decreased mtFAO. AMIO, INDO, and SUL enhanced DNL. ALLO, 5FU, INDI, INDO, SUL, RIF, and TRO impaired VLDL secretion. These seven drugs reduced the mRNA level of genes playing a major role in VLDL assembly and also induced endoplasmic reticulum (ER) stress. Thus, in the absence of severe mitochondrial dysfunction, drug-induced steatosis can be triggered by different mechanisms, although impairment of VLDL secretion seems more frequently involved, possibly as a consequence of ER stress.


Assuntos
Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Mitocôndrias Hepáticas/metabolismo , Testes de Toxicidade , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Ácidos Graxos/metabolismo , Fígado Gorduroso/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Lipoproteínas VLDL/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia
4.
Front Immunol ; 9: 2158, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319621

RESUMO

Mitochondria deserve special attention as sensors of cellular energy homeostasis and metabolic state. Moreover, mitochondria integrate intra- and extra-cellular signals to determine appropriate cellular responses that range from proliferation to cell death. In autoimmunity, as in other inflammatory chronic disorders, the metabolism of immune cells may be extensively remodeled, perturbing sensitive tolerogenic mechanisms. Here, we examine the distribution and effects of the therapeutic 21-mer peptide called P140, which shows remarkable efficacy in modulating immune responses in inflammatory settings. We measured P140 and control peptide effects on isolated mitochondria, the distribution of peptides in live cells, and their influence on the levels of key autophagy regulators. Our data indicate that while P140 targets macro- and chaperone-mediated autophagy processes, it has little effect, if any, on mitochondrial autophagy. Remarkably, however, it suppresses NET release from neutrophils exposed to immobilized NET-anti-DNA IgG complexes. Together, our results suggest that in the mitochondrion-lysosome axis, a likely driver of NETosis and inflammation, the P140 peptide does not operate by affecting mitochondria directly.


Assuntos
Armadilhas Extracelulares/imunologia , Mitocôndrias/imunologia , Mitofagia/efeitos dos fármacos , Neutrófilos/imunologia , Fragmentos de Peptídeos/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Células Cultivadas , Armadilhas Extracelulares/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Microscopia Intravital , Lisossomos/efeitos dos fármacos , Lisossomos/imunologia , Lisossomos/metabolismo , Camundongos , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/imunologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Cultura Primária de Células
5.
Environ Toxicol ; 32(4): 1375-1389, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27501252

RESUMO

Pharmaceuticals are found in the environment but the impact of this contamination on human and animal health is poorly known. The liver could be particularly targeted since a significant number of these drugs are hepatotoxic, in particular via oxidative stress and mitochondrial dysfunction. Notably, the latter events can also be observed in liver diseases linked to obesity, so that the obese liver might be more sensitive to drug toxicity. In this study, we determined the effects of a chronic exposure to low doses of pharmaceuticals in wild-type and obese mice, with a particular focus on mitochondrial function. To this end, wild-type and ob/ob mice were exposed for 4 months to a cocktail of 11 pharmaceuticals provided in drinking water containing 0.01, 0.1, or 1 mg/L of each drug. At the end of the treatment, liver mitochondria were isolated and different parameters were measured. Chronic exposure to the pharmaceuticals reduced mitochondrial respiration driven by succinate and palmitoyl-l-carnitine in wild-type mice and increased antimycin-induced ROS production in ob/ob mice. Hyperglycemia and hepatic histological abnormalities were also observed in treated ob/ob mice. Investigations were also carried out in isolated liver mitochondria incubated with the mixture, or with each individual drug. The mitochondrial effects of the mixture were different from those observed in treated mice and could not be predicted from the results obtained with each drug. Because some of the 11 drugs included in our cocktail can be found in water at relatively high concentrations, our data could be relevant in environmental toxicology. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1375-1389, 2017.


Assuntos
Poluentes Ambientais/toxicidade , Hiperglicemia/induzido quimicamente , Fígado/efeitos dos fármacos , Obesidade/sangue , Animais , Glicemia , Relação Dose-Resposta a Droga , Feminino , Hiperglicemia/sangue , Fígado/metabolismo , Fígado/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias Hepáticas/metabolismo , Dilatação Mitocondrial
6.
J Alzheimers Dis ; 35(1): 107-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23364140

RESUMO

Increased production of amyloid-ß (Aß)42 peptide, derived from the amyloid-ß protein precursor, and its subsequent aggregation into oligomers and plaques constitutes a hallmark of Alzheimer's disease (AD). We here report on a family of low molecular weight molecules, the Aftins (Amyloid-ß Forty-Two Inducers), which, in cultured cells, dramatically affect the production of extracellular/secreted amyloid peptides. Aftins trigger ß-secretase inhibitor and γ-secretase inhibitors (GSIs) sensitive, robust upregulation of Aß42, and parallel down-regulation of Aß38, while Aß40 levels remain stable. In contrast, intracellular levels of these amyloids appear to remain stable. In terms of their effects on Aß38/Aß40/Aß42 relative abundance, Aftins act opposite to γ-secretase modulators (GSMs). Aß42 upregulation induced by Aftin-5 is unlikely to originate from reduced proteolytic degradation or diminished autophagy. Aftin-5 has little effects on mitochondrial functional parameters (swelling, transmembrane potential loss, cytochrome c release, oxygen consumption) but reversibly alters the ultrastructure of mitochondria. Aftins thus alter the Aß levels in a fashion similar to that described in the brain of AD patients. Aftins therefore constitute new pharmacological tools to investigate this essential aspect of AD, in cell cultures, allowing (1) the detection of inhibitors of Aftin induced action (potential 'anti-AD compounds', including GSIs and GSMs) but also (2) the identification, in the human chemical exposome, of compounds that, like Aftins, might trigger sustained Aß42 production and Aß38 down-regulation (potential 'pro-AD compounds').


Assuntos
Adenina/análogos & derivados , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Químicos , Fragmentos de Peptídeos/metabolismo , Adenina/farmacologia , Adenina/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Humanos
7.
Toxicol Sci ; 129(2): 332-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22987451

RESUMO

Drug-induced liver injury (DILI) in humans is difficult to predict using classical in vitro cytotoxicity screening and regulatory animal studies. This explains why numerous compounds are stopped during clinical trials or withdrawn from the market due to hepatotoxicity. Thus, it is important to improve early prediction of DILI in human. In this study, we hypothesized that this goal could be achieved by investigating drug-induced mitochondrial dysfunction as this toxic effect is a major mechanism of DILI. To this end, we developed a high-throughput screening platform using isolated mouse liver mitochondria. Our broad spectrum multiparametric assay was designed to detect the global mitochondrial membrane permeabilization (swelling), inner membrane permeabilization (transmembrane potential), outer membrane permeabilization (cytochrome c release), and alteration of mitochondrial respiration driven by succinate or malate/glutamate. A pool of 124 chemicals (mainly drugs) was selected, including 87 with documented DILI and 37 without reported clinical hepatotoxicity. Our screening assay revealed an excellent sensitivity for clinical outcome of DILI (94 or 92% depending on cutoff) and a high positive predictive value (89 or 82%). A highly significant relationship between drug-induced mitochondrial toxicity and DILI occurrence in patients was calculated (p < 0.001). Moreover, this multiparametric assay allowed identifying several compounds for which mitochondrial toxicity had never been described before and even helped to clarify mechanisms with some drugs already known to be mitochondriotoxic. Investigation of drug-induced loss of mitochondrial integrity and function with this multiparametric assay should be considered for integration into basic screening processes at early stage to select drug candidates with lower risk of DILI in human. This assay is also a valuable tool for assessing the mitochondrial toxicity profile and investigating the mechanism of action of new compounds and marketed compounds.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Animais , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C
8.
PLoS One ; 5(3): e9924, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20360986

RESUMO

Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria.


Assuntos
Compostos de Bifenilo/farmacologia , Regulação Neoplásica da Expressão Gênica , Membranas Mitocondriais/efeitos dos fármacos , Nitrofenóis/farmacologia , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/farmacologia , Feminino , Humanos , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Permeabilidade , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Int J Biochem Cell Biol ; 42(5): 623-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20060930

RESUMO

The adenine nucleotide translocator (ANT) is a mitochondrial bi-functional protein, which catalyzes the exchange of ADP and ATP between cytosol and mitochondria and participates in many models of mitochondrial apoptosis. The human adenine nucleotide translocator sub-family is composed of four isoforms, namely ANT1-4, encoded by four nuclear genes, whose expression is highly regulated. Previous studies have revealed that ANT1 and 3 induce mitochondrial apoptosis, whereas ANT2 is anti-apoptotic. However, the role of the recently identified isoform ANT4 in the apoptotic pathway has not yet been elucidated. Here, we investigated the effects of stable heterologous expression of the ANT4 on proliferation, mitochondrial respiration and cell death in human cancer cells, using ANT3 as a control of pro-apoptotic isoform. As expected, ANT3 enhanced mitochondria-mediated apoptosis in response to lonidamine, a mitochondriotoxic chemotherapeutic drug, and staurosporine, a protein kinase inhibitor. Our results also indicate that the pro-apoptotic effect of ANT3 was accompanied by decreased rate of cell proliferation, alteration in the mitochondrial network topology, and decreased reactive oxygen species production. Of note, we demonstrate for the first time that ANT4 enhanced cell growth without impacting mitochondrial network or respiration. Moreover, ANT4 differentially regulated the intracellular levels of hydrogen peroxide without affecting superoxide anion levels. Finally, stable ANT4 overexpression protected cancer cells from lonidamine and staurosporine apoptosis in a manner independent of Bcl-2 expression. These data highlight a hitherto undefined cytoprotective activity of ANT4, and provide a novel dichotomy in the human ANT isoform sub-family with ANT1 and 3 isoforms functioning as pro-apoptotic while ANT2 and 4 isoforms render cells resistant to death inducing stimuli.


Assuntos
Apoptose , Mitocôndrias/fisiologia , Translocases Mitocondriais de ADP e ATP/fisiologia , Translocador 3 do Nucleotídeo Adenina/biossíntese , Translocador 3 do Nucleotídeo Adenina/genética , Translocador 3 do Nucleotídeo Adenina/fisiologia , Antineoplásicos/farmacologia , Caspase 9/metabolismo , Proliferação de Células , Forma Celular , Citoproteção , Células HeLa , Humanos , Peróxido de Hidrogênio/análise , Indazóis/farmacologia , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/fisiologia , Translocases Mitocondriais de ADP e ATP/biossíntese , Translocases Mitocondriais de ADP e ATP/sangue , Translocases Mitocondriais de ADP e ATP/genética , Fosforilação Oxidativa , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estaurosporina/farmacologia , Superóxidos/análise
10.
Apoptosis ; 14(10): 1190-203, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19693674

RESUMO

Dengue viruses belong to the Flavivirus family and are responsible for hemorrhagic fever in Human. Dengue virus infection triggers apoptosis especially through the expression of the small membrane (M) protein. Using isolated mitochondria, we found that synthetic peptides containing the C-terminus part of the M ectodomain caused apoptosis-related mitochondrial membrane permeabilization (MMP) events. These events include matrix swelling and the dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)). Protein M Flavivirus sequence alignments and helical wheel projections reveal a conserved distribution of charged residues. Moreover, when combined to the cell penetrating HIV-1 Tat peptide transduction domain (Tat-PTD), this sequence triggers a caspase-dependent cell death associated with DeltaPsi(m) loss and cytochrome c release. Mutational approaches coupled to functional screening on isolated mitochondria resulted in the selection of a protein M derived sequence containing nine residues with potent MMP-inducing properties on isolated mitochondria. A chimeric peptide composed of a Tat-PTD linked to the 9-mer entity triggers MMP and cell death. Finally, local administration of this chimeric peptide induces growth inhibition of xenograft prostate PC3 tumors in immuno-compromised mice, and significantly enhances animal survival. Together, these findings support the notion of using viral genomes as valuable sources to discover mitochondria-targeted sequences that may lead to the development of new anticancer compounds.


Assuntos
Flavivirus/química , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Peptídeos/farmacologia , Proteínas Virais/química , Ensaios Antitumorais Modelo de Xenoenxerto , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos , Dados de Sequência Molecular , Peptídeos/química , Permeabilidade/efeitos dos fármacos , Estrutura Terciária de Proteína , Análise de Sobrevida , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia
11.
Invest Ophthalmol Vis Sci ; 49(9): 3790-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18515572

RESUMO

PURPOSE: Goblet cells of the conjunctival epithelium synthesize and secrete TFF1 (Trefoil factor 1), a small protease-resistant peptide that, together with mucins, is responsible for the rheologic properties of the tear film. This study aimed to determine whether TFF1, whose synthesis increases in inflammatory conditions such as pterygium, could protect conjunctival cells from apoptosis. METHODS: Chang conjunctival cells, either wild-type or expressing TFF1 through stable transfection, were exposed to benzalkonium chloride (BAK) and ultraviolet (UV) irradiation to trigger apoptosis. The authors used cell fractionation to detect lipid raft-associated proteins, coimmunoprecipitation to explore the formation of a death-inducing signaling complex (DISC), and a combination of immunofluorescence, immunoblotting, flow cytometry, siRNA-mediated decrease in gene expression, and electrophoretic mobility shift assay to explore the mechanisms of TFF1-protective effects. RESULTS: TFF1 protects Chang conjunctival cells from apoptosis induced by UV irradiation and BAK at two levels. First, TFF1 prevents caspase-8 activation at the level of the DISC that involves Fas receptor in plasma membrane rafts, which in turn decreases the mitochondrial release of cytochrome c. Second, TFF1 interferes with caspase-9 and caspase-3 activation through an NF-kappaB-induced increase in the expression of XIAP (X-linked inhibitor of apoptosis protein). CONCLUSIONS: TFF1 upregulation on inflammatory conditions may be a protective mechanism that limits conjunctival cell loss by inhibiting apoptosis upstream and downstream of the mitochondrial events. These observations suggest a potential interest of TFF1 or related peptides to prevent cell death in ocular surface disorders.


Assuntos
Apoptose/fisiologia , Compostos de Benzalcônio/farmacologia , Túnica Conjuntiva/citologia , Túnica Conjuntiva/fisiologia , Mitocôndrias/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Raios Ultravioleta , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Linhagem Celular , Mapeamento Cromossômico , Cromossomos Humanos Par 21 , Túnica Conjuntiva/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/fisiologia , Citometria de Fluxo , Humanos , Potenciais da Membrana/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Membranas Mitocondriais/fisiologia , Transfecção , Fator Trefoil-1 , Proteínas Supressoras de Tumor/genética
12.
Invest Ophthalmol Vis Sci ; 47(10): 4221-30, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17003409

RESUMO

PURPOSE: To determine the molecular mechanisms of conjunctival cell death on exposure to the quaternary ammonium preservative benzalkonium chloride (BAC) and ultraviolet (UV) irradiation. METHODS: Chang conjunctival cells, either wild-type or stably transfected with various constructs encoding antiapoptotic molecules or transiently transfected with siRNA targeting the beclin-1 gene, were exposed to BAC or UV radiation Cell death was analyzed morphologically with fluorescence and electron microscopy, and molecular mechanisms of death were studied by using immunofluorescence, cell fractionation, caspase substrates, and immunoblot analysis, with or without immunoprecipitation. The main results were controlled in IOBA-NHC cells. RESULTS: Both agents induced cytochrome c release from the mitochondria, caspase activation, and nuclear chromatin condensation, suggesting caspase-dependent apoptosis. These events are prevented by stable expression of Bcl-2 protein. Both agents also induced a redistribution of Fas in plasma membrane rafts and the Fas-ligand-independent formation of a death-inducing complex leading to caspase-8 activation. Stable expression of either a dominant negative construct of Fas-associated death domain (FADD) or the long or short isoform of FADD-like interleukin-1-beta-converting enzyme inhibitory protein (FLIP) inhibited caspase-8 activation in response to both UV radiation and BAC. However, these proteins, as well as permeant peptides and baculovirus p35 caspase-inhibitors, delayed more efficiently the UV irradiation-induced than the BAC-induced nuclear chromatin condensation. BAC specifically activated a caspase-independent pathway by inducing the mitochondrial release of apoptosis-inducing factor. BAC-treated cells contain autophagosomes/autolysosomes, a characteristic feature of autophagy, and siRNA-mediated downregulation of the beclin-1 gene, whose product is crucial for autophagy, increases BAC toxicity. CONCLUSIONS: UV irradiation induces typical, caspase-dependent cell death, whereas death induced by BAC associates features of caspase-dependent and -independent apoptosis counteracted by an autophagic process.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Compostos de Benzalcônio/farmacologia , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/efeitos da radiação , Conservantes Farmacêuticos/farmacologia , Fator de Indução de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Caspases/metabolismo , Técnicas de Cultura de Células , Citocromos c/metabolismo , Ativação Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/efeitos da radiação , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Immunoblotting , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Raios Ultravioleta , Receptor fas/metabolismo
13.
Int J Oncol ; 27(4): 997-1003, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16142316

RESUMO

Trefoil factor family (TFF) of proteins are involved in mucosal protection and healing and are induced in inflammatory diseases and neoplastic progression. The purpose of this investigation was to determine if expression of the trefoil factor family (TFF) proteins is altered in human pterygium compared to in normal conjunctiva. Fourteen pterygia (P) and 21 biopsies from normal human conjunctiva (NC) were studied. TFF1, TFF2 and TFF3 mRNA levels were measured by semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR), and TFF1 mRNA levels in addition by real-time PCR. The cellular expression of TFF1 (pS2), TFF3 (intestinal trefoil factor) and M1/MUC5AC mucin in ten pterygia and ten normal human conjunctiva specimens was analyzed by immunohistochemistry using specific monoclonal antibodies. TFF1 mRNA levels were higher in P than in NC (p=0.02). Accordingly, intensity of TFF1 and mucin MUC5AC immunostaining was higher in P than in NC. Mucus-secreting goblet cells (GC) were more densely packed in P than in NC. In both cases, TFF1 protein was detected in GC only, but was not systematically expressed in all GC. In addition, TFF3 mRNA levels were similar (p=0.89) in NC and P, while TFF2 (spasmolytic polypeptide) mRNA were not detected. Both TFF3 and MUC5AC proteins were clearly detected in all GC identified in NC and P. Increased expression of TFF1 mRNA and protein is observed in pterygium GC, suggesting that this trefoil protein might exert protective and beneficial roles during the pathogenesis of this benign and inflammatory conjunctival tumor.


Assuntos
Túnica Conjuntiva/metabolismo , Regulação da Expressão Gênica , Peptídeos/metabolismo , Pterígio/metabolismo , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Adulto , Idoso , Biópsia , DNA Complementar/metabolismo , Células Caliciformes/metabolismo , Humanos , Imuno-Histoquímica , Inflamação , Pessoa de Meia-Idade , Mucina-5AC , Mucinas/biossíntese , Mucinas/metabolismo , Mucosa/patologia , Peptídeos/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Temperatura , Fatores de Tempo , Fator Trefoil-1 , Fator Trefoil-2 , Fator Trefoil-3
14.
Methods Mol Biol ; 281: 313-31, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15220540

RESUMO

Cell death by apoptosis was first identified based on morphological changes reproduced with great fidelity in cells of widely different origin when exposed to a death stimulus. These changes include condensation of the cytosol and the nuclear chromatin, blebbing of the plasma membrane, and cell fragmentation into corpses that are engulfed by neighboring cells. Apoptotic cells demonstrate various levels of DNA fragmentation and exposed phosphatidylserine on the outer leaflet of their plasma membrane. Most apoptotic pathways converge on the mitochondria, inducing the disruption of the mitochondrial trans-membrane potential and the release of soluble molecules from mitochondrial inter-membrane space. One of these molecules is cytochrome c, which, in the cytosol, activates proteases of the caspase family. This chapter suggests methods to identify these characteristic morphological and biochemical events, and cell-free systems that can be used to identify the molecular pathways leading to the death phenotype.


Assuntos
Apoptose , Biomarcadores/análise , Animais , Anexina A5/metabolismo , Caspases/metabolismo , Membrana Celular/enzimologia , Sistema Livre de Células , Citocromos c/metabolismo , DNA/análise , Citometria de Fluxo/métodos , Corantes Fluorescentes , Humanos , Potenciais da Membrana , Fosfatidilserinas/análise , Timidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...