Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 65(7): 2032-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207551

RESUMO

In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P < 0.05 vs. vehicle). A significant 20% reduction in hepatic LDL receptor protein expression was also observed with empagliflozin. Importantly, none of these parameters were changed by empagliflozin in fed conditions. Empagliflozin significantly reduced the catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P < 0.05 vs. vehicle). These data suggest that empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion.


Assuntos
Compostos Benzidrílicos/farmacologia , LDL-Colesterol/metabolismo , Dislipidemias/tratamento farmacológico , Glucosídeos/farmacologia , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Compostos Benzidrílicos/uso terapêutico , Glicemia/metabolismo , LDL-Colesterol/sangue , Cricetinae , Dieta Hiperlipídica , Dislipidemias/etiologia , Dislipidemias/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glucosídeos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Masculino , Mesocricetus
2.
Eur J Pharmacol ; 740: 135-43, 2014 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-25008069

RESUMO

Cholesteryl ester transfer protein (CETP) inhibitors dalcetrapib and anacetrapib differentially alter LDL- and HDL-cholesterol levels, which might be related to the potency of each drug to inhibit CETP activity. We evaluated the effects of both drugs at similar levels of CETP inhibition on macrophage-to-feces reverse cholesterol transport (RCT) in hamsters. In normolipidemic hamsters, both anacetrapib 30 mg/kg QD and dalcetrapib 200 mg/kg BID inhibited CETP activity by ~60%. After injection of 3H-cholesteryl oleate labeled HDL, anacetrapib and dalcetrapib reduced HDL-cholesteryl esters fractional catabolic rate (FCR) by 30% and 26% (both P<0.001 vs. vehicle) respectively, but only dalcetrapib increased HDL-derived 3H-tracer fecal excretion by 30% (P<0.05 vs. vehicle). After 3H-cholesterol labeled macrophage intraperitoneal injection, anacetrapib stimulated 3H-tracer appearance in HDL, but both drugs did not promote macrophage-derived 3H-tracer fecal excretion. In dyslipidemic hamsters, both anacetrapib 1 mg/kg QD and dalcetrapib 200 mg/kg BID inhibited CETP activity by ~65% and reduced HDL-cholesteryl ester FCR by 36% (both P<0.001 vs. vehicle), but only anacetrapib increased HDL-derived 3H-tracer fecal excretion significantly by 39%. After 3H-cholesterol labeled macrophage injection, only anacetrapib 1 mg/kg QD stimulated macrophage-derived 3H-tracer appearance in HDL. These effects remained weaker than those observed with anacetrapib 60 mg/kg QD, which induced a maximal inhibition of CETP and stimulation of macrophage-derived 3H-tracer fecal excretion. In contrast, dalcetrapib 200 mg/kg BID reduced macrophage-derived 3H-tracer fecal excretion by 23% (P<0.05 vs. vehicle). In conclusion, anacetrapib and dalcetrapib differentially alter HDL metabolism and RCT in hamsters. A stronger inhibition of CETP may be required to promote macrophage-to-feces reverse cholesterol transport in dyslipidemic hamsters.


Assuntos
Anticolesterolemiantes/farmacologia , Colesterol/metabolismo , Fezes/química , Macrófagos/metabolismo , Oxazolidinonas/farmacologia , Compostos de Sulfidrila/farmacologia , Amidas , Animais , Transporte Biológico , Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/sangue , Cricetinae , Dislipidemias/sangue , Dislipidemias/metabolismo , Ésteres , Masculino , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...