Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1155754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492522

RESUMO

Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for 60 individual zebrafish spanning 8 weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.

2.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37213080

RESUMO

Unlike mammals, adult zebrafish undergo spontaneous recovery after major spinal cord injury. Whereas reactive gliosis presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish elicit pro-regenerative bridging functions after injury. Here, we perform genetic lineage tracing, assessment of regulatory sequences and inducible cell ablation to define mechanisms that direct the molecular and cellular responses of glial cells after spinal cord injury in adult zebrafish. Using a newly generated CreERT2 transgenic line, we show that the cells directing expression of the bridging glial marker ctgfa give rise to regenerating glia after injury, with negligible contribution to either neuronal or oligodendrocyte lineages. A 1 kb sequence upstream of the ctgfa gene was sufficient to direct expression in early bridging glia after injury. Finally, ablation of ctgfa-expressing cells using a transgenic nitroreductase strategy impaired glial bridging and recovery of swim behavior after injury. This study identifies key regulatory features, cellular progeny, and requirements of glial cells during innate spinal cord regeneration.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Neuroglia/metabolismo , Animais Geneticamente Modificados , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Regeneração Nervosa/genética , Mamíferos/metabolismo
3.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778427

RESUMO

Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for sixty individual zebrafish spanning eight weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.

4.
Cell Rep ; 41(8): 111705, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417881

RESUMO

Intrinsic and extrinsic inhibition of neuronal regeneration obstruct spinal cord (SC) repair in mammals. In contrast, adult zebrafish achieve functional recovery after complete SC transection. While studies of innate SC regeneration have focused on axon regrowth as a primary repair mechanism, how local adult neurogenesis affects functional recovery is unknown. Here, we uncover dynamic expression of zebrafish myostatin b (mstnb) in a niche of dorsal SC progenitors after injury. mstnb mutants show impaired functional recovery, normal glial and axonal bridging across the lesion, and an increase in the profiles of newborn neurons. Molecularly, neuron differentiation genes are upregulated, while the neural stem cell maintenance gene fgf1b is downregulated in mstnb mutants. Finally, we show that human fibroblast growth factor 1 (FGF1) treatment rescues the molecular and cellular phenotypes of mstnb mutants. These studies uncover unanticipated neurogenic functions for mstnb and establish the importance of local adult neurogenesis for innate SC repair.


Assuntos
Traumatismos da Medula Espinal , Peixe-Zebra , Adulto , Humanos , Animais , Recém-Nascido , Miostatina , Neurogênese , Traumatismos da Medula Espinal/genética , Recuperação de Função Fisiológica , Fator 1 de Crescimento de Fibroblastos , Mamíferos
5.
J Vis Exp ; (177)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34842242

RESUMO

Due to their renowned regenerative capacity, adult zebrafish are a premier vertebrate model to interrogate mechanisms of innate spinal cord regeneration. Following complete transection of their spinal cord, zebrafish extend glial and axonal bridges across severed tissue, regenerate neurons proximal to the lesion, and regain their swim capacities within 8 weeks of injury. Recovery of swim function is thus a central readout for functional spinal cord repair. Here, we describe a set of behavioral assays to quantify zebrafish motor capacity inside an enclosed swim tunnel. The goal of these methods is to provide quantifiable measurements of swim endurance and swim behavior in adult zebrafish. For swim endurance, zebrafish are subjected to a constantly increasing water current velocity until exhaustion, and time at exhaustion is reported. For swim behavior assessment, zebrafish are subjected to low current velocities and swim videos are captured with a dorsal view of the fish. Percent activity, burst frequency, and time spent against the water current provide quantifiable readouts of swim behavior. We quantified swim endurance and swim behavior in wild-type zebrafish before injury and after spinal cord transection. We found that zebrafish lose swim function after spinal cord transection and gradually regain that capacity between 2 and 6 weeks post-injury. The methods described in this study could be applied to neurobehavioral, musculoskeletal, skeletal muscle regeneration, and neural regeneration studies in adult zebrafish.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Medula Espinal , Regeneração da Medula Espinal/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra
6.
Dev Cell ; 56(5): 613-626.e7, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33609461

RESUMO

Anti-regenerative scarring obstructs spinal cord repair in mammals and presents a major hurdle for regenerative medicine. In contrast, adult zebrafish possess specialized glial cells that spontaneously repair spinal cord injuries by forming a pro-regenerative bridge across the severed tissue. To identify the mechanisms that regulate differential regenerative capacity between mammals and zebrafish, we first defined the molecular identity of zebrafish bridging glia and then performed cross-species comparisons with mammalian glia. Our transcriptomics show that pro-regenerative zebrafish glia activate an epithelial-to-mesenchymal transition (EMT) gene program and that EMT gene expression is a major factor distinguishing mammalian and zebrafish glia. Functionally, we found that localized niches of glial progenitors undergo EMT after spinal cord injury in zebrafish and, using large-scale CRISPR-Cas9 mutagenesis, we identified the gene regulatory network that activates EMT and drives functional regeneration. Thus, non-regenerative mammalian glia lack an essential EMT-driving gene regulatory network that reprograms pro-regenerative zebrafish glia after injury.


Assuntos
Transição Epitelial-Mesenquimal , Neuroglia/citologia , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal , Medula Espinal/citologia , Animais , Diferenciação Celular , Proliferação de Células , Mamíferos , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...