Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2446, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510230

RESUMO

The interlocking roles of lexical, syntactic and semantic processing in language comprehension has been the subject of longstanding debate. Recently, the cortical response to a frequency-tagged linguistic stimulus has been shown to track the rate of phrase and sentence, as well as syllable, presentation. This could be interpreted as evidence for the hierarchical processing of speech, or as a response to the repetition of grammatical category. To examine the extent to which hierarchical structure plays a role in language processing we recorded EEG from human participants as they listen to isochronous streams of monosyllabic words. Comparing responses to sequences in which grammatical category is strictly alternating and chosen such that two-word phrases can be grammatically constructed-cold food loud room-or is absent-rough give ill tell-showed cortical entrainment at the two-word phrase rate was only present in the grammatical condition. Thus, grammatical category repetition alone does not yield entertainment at higher level than a word. On the other hand, cortical entrainment was reduced for the mixed-phrase condition that contained two-word phrases but no grammatical category repetition-that word send less-which is not what would be expected if the measured entrainment reflected purely abstract hierarchical syntactic units. Our results support a model in which word-level grammatical category information is required to build larger units.

2.
J Physiol ; 595(15): 5341-5357, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28516455

RESUMO

KEY POINTS: Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. ABSTRACT: Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the amplitudes of the SS modulation phases were generally weak. Division of spikelets into likely axonally propagated and non-propagated groups (based on their interspikelet interval) showed that the correlation of spikelet number with SS firing rate primarily reflected a relationship with non-propagated spikelets. In sum, the results show both zebrin-related and non-zebrin-related physiological heterogeneity in SS-CS interactions among PCs, which suggests that the cerebellar cortex is more functionally diverse than is assumed by standard theories of cerebellar function.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Células de Purkinje/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Ratos Sprague-Dawley , Ratos Wistar
3.
J Physiol ; 595(1): 283-299, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27265808

RESUMO

KEY POINTS: Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. ABSTRACT: Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning.


Assuntos
Células de Purkinje/fisiologia , Potenciais de Ação , Animais , Gatos , Feminino , Masculino , Ratos Sprague-Dawley , Ratos Wistar
4.
Proc Natl Acad Sci U S A ; 112(35): 11096-101, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26286993

RESUMO

Functional connectivity between the hippocampus and prefrontal cortex (PFC) is essential for associative recognition memory and working memory. Disruption of hippocampal-PFC synchrony occurs in schizophrenia, which is characterized by hypofunction of NMDA receptor (NMDAR)-mediated transmission. We demonstrate that activity of dopamine D2-like receptors (D2Rs) leads selectively to long-term depression (LTD) of hippocampal-PFC NMDAR-mediated synaptic transmission. We show that dopamine-dependent LTD of NMDAR-mediated transmission profoundly disrupts normal synaptic transmission between hippocampus and PFC. These results show how dopaminergic activation induces long-term hypofunction of NMDARs, which can contribute to disordered functional connectivity, a characteristic that is a hallmark of psychiatric disorders such as schizophrenia.


Assuntos
Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Humanos , Receptores de Dopamina D2/fisiologia , Transmissão Sináptica
5.
PLoS One ; 9(8): e105633, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25144311

RESUMO

In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs) in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+) and negative (Z-) bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z- PCs, respectively. In both datasets significant differences in simple spike (SS) activity were observed between cortical regions. Specifically, Z- and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution) was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS) activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Células de Purkinje/fisiologia , Animais , Feminino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...