Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791979

RESUMO

The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key regulators of blood vessel formation, including in tumors, where their deregulated function can promote the production of aberrant, leaky blood vessels, supporting tumor development. Here we investigated the VEGFR1 ligand VEGF-B, which we demonstrate to be expressed in tumor cells and in tumor stroma and vasculature across a range of tumor types. We examined the anti-VEGF-B-specific monoclonal antibody 2H10 in preclinical xenograft models of breast and colorectal cancer, in comparison with the anti-VEGF-A antibody bevacizumab. Similar to bevacizumab, 2H10 therapy was associated with changes in tumor blood vessels and intra-tumoral diffusion consistent with normalization of the tumor vasculature. Accordingly, treatment resulted in partial inhibition of tumor growth, and significantly improved the response to chemotherapy. Our studies indicate the importance of VEGF-B in tumor growth, and the potential of specific anti-VEGF-B treatment to inhibit tumor development, alone or in combination with established chemotherapies.

2.
Nucl Med Biol ; 120-121: 108351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37224789

RESUMO

OBJECTIVES: 89Zr-labelled proteins are gaining importance in clinical research in a variety of diseases. To date, no clinical study has been reported that utilizes an automated approach for radiosynthesis of 89Zr-labelled radiopharmaceuticals. We aim to develop an automated method for the clinical production of 89Zr-labelled proteins and apply this method to Durvalumab, a monoclonal antibody targeting PD-L1 immune-checkpoint protein. PD-L1 expression is poorly understood and can be up-regulated over the course of chemo- and radiotherapy treatment. The ImmunoPET multicentre study aims to examine the dynamics of PD-L1 expression via 89Zr-Durvalumab PET imaging before, during, and after chemoradiotherapy. The developed automated technique will enable reproducible clinical production of [89Zr]Zr-DFOSq-Durvalumab for this study at three different sites. METHODS: Conjugation of Durvalumab to H3DFOSqOEt was optimized for optimal chelator-to-antibody ratio. Automated radiolabelling of H3DFOSq-Durvalumab with zirconium-89 was optimized on the disposable cassette based iPHASE technologies MultiSyn radiosynthesizer using a modified cassette. Activity losses were tracked using a dose calibrator and minimized by optimizing fluid transfers, reaction buffer, antibody formulation additives and pH. The biological profile of the radiolabelled antibody was confirmed in vivo in PD-L1+ (HCC827) and PD-L1- (A549) murine xenografts. Clinical process validation and quality control were performed at three separate study sites to satisfy clinical release criteria. RESULTS: H3DFOSq-Durvalumab with an average CAR of 3.02 was obtained. Radiolabelling kinetics in succinate (20 mM, pH 6) were significantly faster when compared to HEPES (0.5 M, pH 7.2) with >90 % conversion observed after 15 min. Residual radioactivity in the 89Zr isotope vial was reduced from 24 % to 0.44 % ± 0.18 % (n = 7) and losses in the reactor vial were reduced from 36 % ± 6 % (n = 4) to 0.82 % ± 0.75 % (n = 4) by including a surfactant in the reaction and formulation buffers. Overall process yield was 75 % ± 6 % (n = 5) and process time was 40 min. Typically, 165 MBq of [89Zr]Zr-DFOSq-Durvalumab with an apparent specific activity of 315 MBq/mg ± 34 MBq/mg (EOS) was obtained in a volume of 3.0 mL. At end-of-synthesis (EOS), radiochemical purity and protein integrity were always >99 % and >96 %, respectively, and dropped to 98 % and 65 % after incubation in human serum for 7 days at 37 °C. Immunoreactive fraction in HEK293/PD-L1 cells was 83.3 ± 9.0 (EOS). Preclinical in vivo data at 144 h p.i. showed excellent SUVmax in PD-L1+ tumour (8.32 ± 0.59) with a tumour-background ratio of 17.17 ± 3.96. [89Zr]Zr-DFOSq-Durvalumab passed all clinical release criteria at each study site and was deemed suitable for administration in a multicentre imaging trial. CONCLUSION: Fully automated production of [89Zr]Zr-DFOSq-Durvalumab for clinical use was achieved with minimal exposure to the operator. The cassette-based approach allows for consecutive productions on the same day and offers an alternative to currently used manual protocols. The method should be broadly applicable to other proteins and has the potential for clinical impact considering the growing number of clinical trials investigating 89Zr-labelled antibodies.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Células HEK293 , Anticorpos Monoclonais , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Zircônio
3.
Chem Commun (Camb) ; 59(21): 3126-3129, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36809538

RESUMO

Bromodomain and extraterminal (BET) proteins, a family of epigenetic regulators, have emerged as important oncology drug targets. BET proteins have not been targeted for molecular imaging of cancer. Here, we report the development of a novel molecule radiolabelled with positron emitting fluorine-18, [18F]BiPET-2, and its in vitro and preclinical evaluation in glioblastoma models.


Assuntos
Glioblastoma , Proteínas , Humanos , Tomografia por Emissão de Pósitrons/métodos , Glioblastoma/diagnóstico por imagem , Domínios Proteicos
4.
Invest New Drugs ; 40(4): 747-755, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35404015

RESUMO

Ephrin type-A 2 (EphA2) is a transmembrane receptor expressed in epithelial cancers. We report on a phase I dose escalation and biodistribution study of DS-8895a, an anti-EphA2 antibody, in patients with advanced EphA2 positive cancers. DS-8895a was administered at 1, 3, 10 or 20 mg/kg every 2 weeks to determine safety, pharmacokinetics and anti-tumor efficacy. All patients underwent 89Zr trace-labelled infusion of DS-8895a (89Zr-DS-8995a) positron emission tomography imaging to determine the biodistribution of DS-8895a, and correlate findings with EphA2 expression, receptor saturation and response. Nine patients were enrolled on study. Of patients enrolled, seven patients received at least one infusion of DS-8895a: four patients received 1 mg/kg dose (Cohort 1) and three patients received 3 mg/kg dose (Cohort 2). Median age was 67.0 years (range 52-81), majority male (71%), and median number of prior systemic therapies was three (range 0-8). The primary cancer diagnosis was colorectal cancer (two patients) and one patient each had gastric, head and neck, high-grade serous adenocarcinoma, lung, and pancreatic cancers. No dose-limiting toxicities or treatment-related adverse events reported. The best response for the patients in Cohort 1 was stable disease and in Cohort 2 was progressive disease. 89Zr-DS-8895a demonstrated no normal tissue uptake and specific low-grade uptake in most tumours. DS-8895a had limited therapeutic efficacy at doses evaluated and 89Zr-DS-8895a demonstrated low tumour uptake. The biodistribution data from this study were key in halting further development of DS-8895a, highlighting the importance of biodistribution studies in drug development. (Trial registration: ClinicalTrials.gov Identifier NCT02252211).


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos Imunológicos , Neoplasias , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/uso terapêutico , Efrina-A2/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Receptor EphA2/efeitos dos fármacos , Distribuição Tecidual
5.
Neurooncol Adv ; 3(1): vdab102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34549181

RESUMO

BACKGROUND: The adverse impact of increasing brain tumor size on the efficacy of antibody-drug conjugates (ADCs) was investigated preclinically then validated with clinical data. METHODS­PRECLINICAL STUDY: The impact of tumor size on ADC tumor delivery and treatment response was evaluated in an EGFR-amplified patient-derived glioblastoma (GBM) model following treatment with Depatuxizumab mafadotin (Depatux-M). Biodistribution and imaging studies correlated drug distribution with starting treatment volume and anti-tumor activity. METHODS­CLINICAL STUDY: M12-356 was a Phase I study of Depatux-M in patients with GBM. Blinded volumetric analysis of baseline tumor volumes of M12-356 patients was undertaken by two reviewers and results correlated with response and survival. RESULTS: Preclinically, imaging and biodistribution studies showed specific and significantly higher tumor uptake of zirconium-89 labeled Depatux-M (89Zr-Depatux-M) in mice with smaller tumor volume (~98 mm3) versus those with larger volumes (~365 mm3); concordantly, mice with tumor volumes ≤100 mm3 at treatment commencement had significantly better growth inhibition by Depatux-M (93% vs 27%, P < .001) and significantly longer overall survival (P < .0001) compared to tumors ≥400 mm3. Clinically, patients with tumor volumes <25 cm3 had significantly higher response rates (17% vs. 0%, P = .009) and longer overall survival (0.5 vs 0.89 years, P = .001) than tumors above 25 cm3. CONCLUSION: Both preclinical and clinical data showed intra-tumoral concentration and efficacy of Depatux-m inversely correlated with tumor size. This finding merit further investigation with pretreatment tumor volume as a predictor for response to ADCs, in both gliomas and other solid tumors.

6.
Cancer Res ; 81(7): 1704-1718, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33547161

RESUMO

The androgen receptor (AR) is the key oncogenic driver of prostate cancer, and despite implementation of novel AR targeting therapies, outcomes for metastatic disease remain dismal. There is an urgent need to better understand androgen-regulated cellular processes to more effectively target the AR dependence of prostate cancer cells through new therapeutic vulnerabilities. Transcriptomic studies have consistently identified lipid metabolism as a hallmark of enhanced AR signaling in prostate cancer, yet the relationship between AR and the lipidome remains undefined. Using mass spectrometry-based lipidomics, this study reveals increased fatty acyl chain length in phospholipids from prostate cancer cells and patient-derived explants as one of the most striking androgen-regulated changes to lipid metabolism. Potent and direct AR-mediated induction of ELOVL fatty acid elongase 5 (ELOVL5), an enzyme that catalyzes fatty acid elongation, was demonstrated in prostate cancer cells, xenografts, and clinical tumors. Assessment of mRNA and protein in large-scale data sets revealed ELOVL5 as the predominant ELOVL expressed and upregulated in prostate cancer compared with nonmalignant prostate. ELOVL5 depletion markedly altered mitochondrial morphology and function, leading to excess generation of reactive oxygen species and resulting in suppression of prostate cancer cell proliferation, 3D growth, and in vivo tumor growth and metastasis. Supplementation with the monounsaturated fatty acid cis-vaccenic acid, a direct product of ELOVL5 elongation, reversed the oxidative stress and associated cell proliferation and migration effects of ELOVL5 knockdown. Collectively, these results identify lipid elongation as a protumorigenic metabolic pathway in prostate cancer that is androgen-regulated, critical for metastasis, and targetable via ELOVL5. SIGNIFICANCE: This study identifies phospholipid elongation as a new metabolic target of androgen action that is critical for prostate tumor metastasis.


Assuntos
Elongases de Ácidos Graxos/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , RNA Interferente Pequeno/uso terapêutico , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/farmacologia , Receptores Androgênicos/fisiologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nucl Med Biol ; 93: 37-45, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33310350

RESUMO

INTRODUCTION: Altered lipid metabolism and subsequent changes in cellular lipid composition have been observed in prostate cancer cells, are associated with poor clinical outcome, and are promising targets for metabolic therapies. This study reports for the first time on the synthesis of a phospholipid radiotracer based on the phospholipid 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine (PC44:12) to allow tracking of polyunsaturated lipid tumor uptake via PET imaging. This tracer may aid in the development of strategies to modulate response to therapies targeting lipid metabolism in prostate cancer. METHODS: Lipidomics analysis of prostate tumor explants and LNCaP tumor cells were used to identify PC44:12 as a potential phospholipid candidate for radiotracer development. Synthesis of phosphocholine precursor and non-radioactive standard were optimised using click chemistry. The biodistribution of a fluorine-18 labeled analogue, N-{[4-(2-[18F]fluoroethyl)-2,3,4-triazol-1-yl]methyl}-1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine ([18F]2) was determined in LNCaP prostate tumor-bearing NOD SCID gamma mice by ex vivo biodistribution and PET imaging studies and compared to biodistribution of [18F]fluoromethylcholine. RESULTS: [18F]2 was produced with a decay-corrected yield of 17.8 ± 3.7% and an average radiochemical purity of 97.00 ± 0.89% (n = 6). Molar activity was 85.1 ± 3.45 GBq/µmol (2300 ± 93 mCi/µmol) and the total synthesis time was 2 h. Ex vivo biodistribution data demonstrated high liver uptake (41.1 ± 9.2%ID/g) and high splenic uptake (10.9 ± 9.1%ID/g) 50 min post-injection. Ex vivo biodistribution showed low absolute tumor uptake of [18F]2 (0.8 ± 0.3%ID/g). However, dynamic PET imaging demonstrated an increase over time of the relative tumor-to-muscle ratio with a peak of 2.8 ± 0.5 reached 1 h post-injection. In contrast, dynamic PET of [18F]fluoromethylcholine demonstrated no increase in tumor-to-muscle ratios due to an increase in both tumor and muscle over time. Absolute uptake of [18F]fluoromethylcholine was higher and peaked at 60 min post injection (2.25 ± 0.29%ID/g) compared to [18F]2 (1.44 ± 0.06%ID/g) during the 1 h dynamic scan period. CONCLUSIONS AND ADVANCES IN KNOWLEDGE: This study demonstrates the ability to radiolabel phospholipids and indicates the potential to monitor the in vivo distribution of phospholipids using fluorine-18 based PET.


Assuntos
Radioisótopos de Flúor/química , Fosfolipídeos/química , Fosfolipídeos/síntese química , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo , Masculino
8.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023139

RESUMO

Epidermal growth factor receptor (EGFR) is highly overexpressed in malignant mesothelioma (MM). MAb806 is a novel anti-EGFR antibody that selectively targets a tumor-selective epitope. MAb806-derived antibody drug conjugates (ADCs), ABT-414, ABBV-221 and ABBV-322, may represent a novel therapeutic strategy in MM. EGFR and mAb806 epitope expressions in mesothelioma cell lines were evaluated using an array of binding assays, and the in vitro cell effects of ABT-414 and ABBV-322 were determined. In vivo therapy studies were conducted in mesothelioma xenograft and patient-derived xenograft (PDX) tumor models. We also performed biodistribution and imaging studies to allow the quantitative targeting of MM by mAb806 using a 89Zr-labeled immunoconjugate-ch806. A high EGFR expression was present in all mesothelioma cell lines evaluated and mAb806 binding present in all cell lines, except NCIH-2452. ABT-414 and ABBV-322 resulted in significant tumor growth inhibition in MM models with high EGFR and mAb806 epitope expressions. In contrast, in an EGFR-expressing PDX model that was negative for the mAb806 epitope, no growth inhibition was observed. We demonstrated the specific targeting of the mAb806 epitope expressing MM tumors using 89Zr-based PET imaging. Our data suggest that targeting EGFR in MM using specific ADCs is a valid therapeutic strategy and supports further investigation of the mAb806 epitope expression as a predictive biomarker.

9.
Nucleic Acid Ther ; 30(2): 117-128, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027209

RESUMO

The prognosis for breast cancer patients diagnosed with brain metastases is poor, with survival time measured merely in months. This can largely be attributed to the limited treatment options capable of reaching the tumor as a result of the highly restrictive blood-brain barrier (BBB). While methods of overcoming this barrier have been developed and employed with current treatment options, the majority are highly invasive and nonspecific, leading to severe neurotoxic side effects. A novel approach to address these issues is the development of therapeutics targeting receptor-mediated transport mechanisms on the BBB endothelial cell membranes. Using this approach, we intercalated doxorubicin (DOX) into a bifunctional aptamer targeting the transferrin receptor on the BBB and epithelial cell adhesion molecule (EpCAM) on metastatic cancer cells. The ability of the DOX-loaded aptamer to transcytose the BBB and selectively deliver the payload to EpCAM-positive tumors was evaluated in an in vitro model and confirmed for the first time in vivo using the MDA-MB-231 breast cancer metastasis model (MDA-MB-231Br). We show that colocalized aptamer and DOX are clearly detectable within the brain lesions 75 min postadministration. Collectively, results from this study demonstrate that through intercalation of a cytotoxic drug into the bifunctional aptamer, a therapeutic delivery vehicle can be developed for specific targeting of EpCAM-positive brain metastases.


Assuntos
Antígenos CD/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Molécula de Adesão da Célula Epitelial/genética , Receptores da Transferrina/genética , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/antagonistas & inibidores , Feminino , Humanos , Camundongos , Receptores da Transferrina/antagonistas & inibidores
10.
BMC Cancer ; 19(1): 924, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521127

RESUMO

BACKGROUND: Current therapies fail to cure over a third of osteosarcoma patients and around three quarters of those with metastatic disease. "Smac mimetics" (also known as "IAP antagonists") are a new class of anti-cancer agents. Previous work revealed that cells from murine osteosarcomas were efficiently sensitized by physiologically achievable concentrations of some Smac mimetics (including GDC-0152 and LCL161) to killing by the inflammatory cytokine TNFα in vitro, but survived exposure to Smac mimetics as sole agents. METHODS: Nude mice were subcutaneously or intramuscularly implanted with luciferase-expressing murine 1029H or human KRIB osteosarcoma cells. The impacts of treatment with GDC-0152, LCL161 and/or doxorubicin were assessed by caliper measurements, bioluminescence, 18FDG-PET and MRI imaging, and by weighing resected tumors at the experimental endpoint. Metastatic burden was examined by quantitative PCR, through amplification of a region of the luciferase gene from lung DNA. ATP levels in treated and untreated osteosarcoma cells were compared to assess in vitro sensitivity. Immunophenotyping of cells within treated and untreated tumors was performed by flow cytometry, and TNFα levels in blood and tumors were measured using cytokine bead arrays. RESULTS: Treatment with GDC-0152 or LCL161 suppressed the growth of subcutaneously or intramuscularly implanted osteosarcomas. In both models, co-treatment with doxorubicin and Smac mimetics impeded average osteosarcoma growth to a greater extent than either drug alone, although these differences were not statistically significant. Co-treatments were also more toxic. Co-treatment with LCL161 and doxorubicin was particularly effective in the KRIB intramuscular model, impeding primary tumor growth and delaying or preventing metastasis. Although the Smac mimetics were effective in vivo, in vitro they only efficiently killed osteosarcoma cells when TNFα was supplied. Implanted tumors contained high levels of TNFα, produced by infiltrating immune cells. Spontaneous osteosarcomas that arose in genetically-engineered immunocompetent mice also contained abundant TNFα. CONCLUSIONS: These data imply that Smac mimetics can cooperate with TNFα secreted by tumor-associated immune cells to kill osteosarcoma cells in vivo. Smac mimetics may therefore benefit osteosarcoma patients whose tumors contain Smac mimetic-responsive cancer cells and TNFα-producing infiltrating cells.


Assuntos
Antineoplásicos/farmacologia , Cicloexanos/farmacologia , Pirróis/farmacologia , Tiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biochem J ; 475(13): 2179-2190, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29794155

RESUMO

Antibody engineering is important for many diagnostic and clinical applications of monoclonal antibodies. We recently reported a series of fragment crystallizable (Fc) mutations targeting the neonatal Fc receptor (FcRn) site on a Lewis Y (Ley) binding IgG1, hu3S193. The hu3S193 variants displayed shortened in vivo half-lives and may have potential for radioimaging or radiotherapy of Ley-positive tumors. Here, we report Fc crystal structures of wild-type hu3S193, seven FcRn-binding site variants, and a variant lacking C1q binding or complement-dependent cytotoxicity (CDC) activity. The Fc conformation of the FcRn-binding sites was similar for wild-type and all mutants of hu3S193 Fc, which suggests that FcRn interactions were directly affected by the amino acid substitutions. The C1q-binding site mutant Fc was nearly identical with the wild-type Fc. Surprisingly, several hu3S193 Fc variants showed large changes in global structure compared with wild-type Fc. All hu3S193 Fc mutants had similar antibody-dependent cellular cytotoxicity, despite some with conformations expected to diminish Fc gamma receptor binding. Several hu3S193 variants displayed altered CDC, but there was no correlation with the different Fc conformations. All versions of hu3S193, except the C1q-binding site mutant, bound C1q, suggesting that the altered CDC of some variants could result from different propensities to form IgG hexamers after engaging Ley on target cells. Overall, our findings support the concept that the antibody Fc is both flexible and mobile in solution. Structure-based design approaches should take into account the conformational plasticity of the Fc when engineering antibodies with optimal effector properties.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Mutação , Receptores Fc/química , Citotoxicidade Celular Dependente de Anticorpos , Sítios de Ligação , Complemento C1q/química , Complemento C1q/genética , Complemento C1q/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Receptores Fc/genética , Receptores Fc/imunologia
12.
AAPS J ; 20(2): 43, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520671

RESUMO

The selection of therapeutic dose for the most effective treatment of tumours is an intricate interplay of factors. Molecular imaging with positron emission tomography (PET) or single-photon emission computed tomography (SPECT) can address questions central to this selection: Does the drug reach its target? Does the drug engage with the target of interest? Is the drug dose sufficient to elicit the desired pharmacological effect? Does the dose saturate available target sites? Combining functional PET and SPECT imaging with anatomical imaging technologies such as magnetic resonance imaging (MRI) or computed tomography (CT) allows drug occupancy at the target to be related directly to anatomical or physiological changes in a tissue resulting from therapy. In vivo competition studies, using a tracer amount of radioligand that binds to the tumour receptor with high specificity, enable direct assessment of the relationship between drug plasma concentration and target occupancy. Including imaging studies in early drug development can aid with dose selection and suggest improvements for patient stratification to obtain higher effective utility from a drug after approval. In this review, the potential value of including translational receptor occupancy studies and molecular imaging strategies early on in drug development is addressed.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Imagem Molecular/métodos , Neoplasias/tratamento farmacológico , Receptores de Superfície Celular/metabolismo , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único
13.
Nat Med ; 24(4): 463-473, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529015

RESUMO

Breast tumors of the basal-like, hormone receptor-negative subtype remain an unmet clinical challenge, as there is high rate of recurrence and poor survival in patients following treatment. Coevolution of the malignant mammary epithelium and its underlying stroma instigates cancer-associated fibroblasts (CAFs) to support most, if not all, hallmarks of cancer progression. Here we delineate a previously unappreciated role for CAFs as determinants of the molecular subtype of breast cancer. We identified paracrine crosstalk between cancer cells expressing platelet-derived growth factor (PDGF)-CC and CAFs expressing the cognate receptors in human basal-like mammary carcinomas. Genetic or pharmacological intervention of PDGF-CC activity in mouse models of cancer resulted in conversion of basal-like breast cancers into a hormone receptor-positive state that enhanced sensitivity to endocrine therapy in previously resistant tumors. We conclude that specification of breast cancer to the basal-like subtype is under microenvironmental control and is therapeutically actionable.


Assuntos
Neoplasias da Mama/patologia , Linfocinas/metabolismo , Comunicação Parácrina , Fator de Crescimento Derivado de Plaquetas/metabolismo , Microambiente Tumoral , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/irrigação sanguínea , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Fibrose , Humanos , Linfocinas/deficiência , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neovascularização Patológica/patologia , Fator de Crescimento Derivado de Plaquetas/deficiência , Prognóstico , Modelos de Riscos Proporcionais , Transdução de Sinais , Células Estromais/patologia , Análise de Sobrevida , Resultado do Tratamento
14.
Cancer Treat Rev ; 59: 1-21, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28715775

RESUMO

The development of HER2-directed monoclonal antibodies and tyrosine kinase inhibitors have provided benefits to cancer patients, as well as produced many insights into the biology of the ErbB receptor family. Current therapies based on ErbB family members have resulted in improved overall survival with associated improvements in quality of life for the cancer patients that respond to treatment. Compared to monotherapy using either two antibodies to block the HER2 receptor blockade or combinatorial approaches with HER2 antibodies and standard therapies has provided additional benefits. Despite the therapeutic success of existing HER2 therapies, personalising treatment and overcoming resistance to these therapies remains a significant challenge. The heterogeneous intra-tumoural HER2 expression and lack of fully predictive and prognostic biomarkers remain significant barriers to improving the use of HER2 antibodies. Imaging modalities using radiolabelled pertuzumab and trastuzumab allow quantitative assessment of intra-tumoural HER2 expression, HER2 antibody saturation and the success of different drug delivery systems to be assessed. Molecular imaging with HER2 antibodies has the potential to be a non-invasive, predictive and prognostic technique capable of influencing therapeutic decisions, predicting response and failure of treatments as well as providing insights into receptor recycling and signalling. Similarly, conjugating HER2 antibodies with novel toxic payloads or combining HER2 antibodies with cellular immunotherapy provide exciting new opportunities for the management of tumours overexpressing HER2. Future research will lead to higher therapeutic responses, lower toxicities and providing insight into the mechanisms of resistance to HER2-targeted treatments.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Terapia de Alvo Molecular/métodos , Receptor ErbB-2/genética , Adulto , Idoso , Neoplasias da Mama/mortalidade , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Qualidade de Vida , Receptor ErbB-2/efeitos dos fármacos , Análise de Sobrevida , Trastuzumab/administração & dosagem , Resultado do Tratamento
15.
Theranostics ; 6(12): 2225-2234, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27924159

RESUMO

Background: DS-8273a, an anti-human death receptor 5 (DR5) agonistic antibody, has cytotoxic activity against human cancer cells and induces apoptosis after specific binding to DR5. DS-8273a is currently being used in clinical Phase I trials. This study evaluated the molecular imaging of DR5 expression in vivo in mouse tumor models using SPECT/CT and PET/MRI, as a tool for drug development and trial design. Methods: DS-8273a was radiolabeled with indium-111 and zirconium-89. Radiochemical purity, immunoreactivity, antigen binding affinity and serum stability were assessed in vitro. In vivo biodistribution and pharmacokinetic studies were performed, including SPECT/CT and PET/MR imaging. A dose-escalation study using a PET/MR imaging quantitative analysis was also performed to determine DR5 receptor saturability in a mouse model. Results:111In-CHX-A″-DTPA-DS-8273a and 89Zr-Df-Bz-NCS-DS-8273a showed high immunoreactivity (100%), high serum stability, and bound to DR5 expressing cells with high affinity (Ka, 1.02-1.22 × 1010 M-1). The number of antibodies bound per cell was 32,000. In vivo biodistribution studies showed high and specific uptake of 111In-CHX-A″-DTPA-DS-8273a and 89Zr-Df-Bz-NCS-DS-8273a in DR5 expressing COLO205 xenografts, with no specific uptake in normal tissues or in DR5-negative CT26 xenografts. DR5 receptor saturation was observed in vivo by biodistribution studies and quantitative PET/MRI analysis. Conclusion:89Zr-Df-Bz-NCS-DS-8273a is a potential novel PET imaging reagent for human bioimaging trials, and can be used for effective dose assessment and patient response evaluation in clinical trials.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/terapia , Anticorpos/administração & dosagem , Radioisótopos/administração & dosagem , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Nanomedicina Teranóstica/métodos , Zircônio/administração & dosagem , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Índio/administração & dosagem , Índio/farmacocinética , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons , Radioisótopos/farmacocinética , Radioterapia/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Resultado do Tratamento , Zircônio/farmacocinética
16.
Mol Imaging ; 152016.
Artigo em Inglês | MEDLINE | ID: mdl-27457521

RESUMO

PURPOSE: The aims of the study were to develop and evaluate a novel residualizing peptide for labeling internalizing antibodies with (124)I to support clinical development using immuno-positron emission tomography (PET). METHODS: The anti-epidermal growth factor receptor antibody ch806 was radiolabeled directly or indirectly with isotopes and various residualizing peptides. Azido-derivatized radiolabeled peptides were conjugated to dibenzylcyclooctyne-derivatized ch806 antibody via click chemistry. The radiochemical purities, antigen-expressing U87MG.de2-7 human glioblastoma cell-binding properties, and targeting of xenografts at 72 hours post injection of all radioconjugates were compared. Biodistribution of (124)I-PEG4-tptddYddtpt-ch806 and immuno-PET imaging were evaluated in tumor-bearing mice. RESULTS: Biodistribution studies using xenografts at 72 hours post injection showed that (131)I-PEG4-tptddYddtpt-ch806 tumor uptake was similar to (111)In-CHX-A″-DTPA-ch806. (125)I-PEG4-tptddyddtpt-ch806 showed a lower tumor uptake value but higher than directly labeled (125)I-ch806. (124)I-PEG4-tptddYddtpt-ch806 was produced at 23% labeling efficiency, 98% radiochemical purity, 25.9 MBq/mg specific activity, and 64% cell binding in the presence of antigen excess. Tumor uptake for (124)I-PEG4-tptddYddtpt-ch806 was similar to (111)In-CHX-A″-DTPA-ch806. High-resolution immuno-PET/magnetic resonance imaging of tumors showed good correlation with biodistribution data. CONCLUSIONS: The mixed d/l-enantiomeric peptide, dThr-dPro-dThr-dAsp-dAsp-Tyr-dAsp-dAsp-dThr-dPro-dThr, is suitable for radiolabeling antibodies with radiohalogens such as (124)I for high-resolution immuno-PET imaging of tumors and for evaluation in early-phase clinical trials.


Assuntos
Anticorpos Monoclonais/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Peptídeos/farmacocinética , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Humanos , Radioisótopos do Iodo/química , Camundongos , Transplante de Neoplasias , Peptídeos/química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Tirosina
17.
MAbs ; 8(4): 775-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27030023

RESUMO

IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs. More recent studies have shown that IgGs bind differently to mouse and human FcRn. In this study we characterize a set of hu3S193 IgG1 variants with mutations in the FcRn binding site. A double mutation in the binding site is necessary to abrogate binding to murine FcRn, whereas a single mutation in the FcRn binding site is sufficient to no longer detect binding to human FcRn and create hu3S193 IgG1 variants with a half-life similar to previously studied hu3S193 F(ab')2 (t1/2ß, I253A, 12.23 h; H310A, 12.94; H435A, 12.57; F(ab')2, 12.6 h). Alanine substitutions in S254 in the CH2 domain and Y436 in the CH3 domain showed reduced binding in vitro to human FcRn and reduced elimination half-lives in huFcRn transgenic mice (t1/2ß, S254A, 37.43 h; Y436A, 39.53 h; wild-type, 83.15 h). These variants had minimal effect on half-life in BALB/c nu/nu mice (t1/2ß, S254A, 119.9 h; Y436A, 162.1 h; wild-type, 163.1 h). These results provide insight into the interaction of human Fc by human FcRn, and are important for antibody-based therapeutics with optimal pharmacokinetics for payload strategies used in the clinic.


Assuntos
Anticorpos Monoclonais/química , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulina G/química , Receptores Fc/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Meia-Vida , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Antígenos do Grupo Sanguíneo de Lewis/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Engenharia de Proteínas , Estabilidade Proteica , Receptores Fc/imunologia
18.
EJNMMI Res ; 6(1): 26, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26983636

RESUMO

BACKGROUND: The aim of the study was to explore Fc mutations of a humanised anti-Lewis-Y antibody (IgG1) hu3S193 as a strategy to improve therapeutic ratios for therapeutic payload delivery. METHODS: Four hu3S193 variants (I253A, H310A, H435A and I253A/H310A) were generated via site-directed mutagenesis and radiolabelled with diagnostic isotopes iodine-125 or indium-111. Biodistribution studies in Lewis-Y-positive tumour-bearing mice were used to calculate the dose in tumours and organs for therapeutic isotopes (iodine-131, yttrium-90 and lutetium-177). RESULTS: (111)In-labelled I253A and H435A showed similar slow kinetics (t 1/2ß, 63.2 and 62.2 h, respectively) and a maximum tumour uptake of 33.11 ± 4.05 and 33.69 ± 3.77 percentage injected dose per gramme (%ID/g), respectively. (111)In-labelled I253A/H310A cleared fastest (t 1/2ß, 9.1 h) with the lowest maximum tumour uptake (23.72 ± 0.85 %ID/g). The highest increase in tumour-to-blood area under the curve (AUC) ratio was observed with the metal-labelled mutants ((90)Y and (177)Lu). (177)Lu-CHX-A" DTPA-hu3S193 I253A/H310A (6:1) showed the highest tumour-to-blood AUC ratio compared to wild type (3:1) and other variants and doubling of calculated dose to tumour based on red marrow dose constraints. CONCLUSIONS: These results suggest that hu3S193 Fc can be engineered with improved therapeutic ratios for (90)Y- and (177)Lu-based therapy, with the best candidate being hu3S193 I253A/H310A for (177)Lu-based therapy.

19.
J Nucl Med ; 57(6): 974-80, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26940768

RESUMO

UNLABELLED: Subtype A2 of the erythropoietin-producing hepatocellular tyrosine kinase (EphA2) cell surface receptor is expressed in a range of epithelial cancers. This study evaluated the molecular imaging of EphA2 expression in vivo in mouse tumor models using SPECT/MR and PET/MR and a humanized anti-EphA2 antibody, DS-8895a. METHODS: DS-8895a was labeled with (111)In, (125)I, and (89)Zr and assessed for radiochemical purity, immunoreactivity (Lindmo analysis), antigen-binding affinity (Scatchard analysis), and serum stability in vitro. In vivo biodistribution, imaging, and pharmacokinetic studies were performed with SPECT/MR and PET/MR. A dose-escalation study was also performed to determine EphA2 receptor saturability through tissue and imaging quantitative analysis. RESULTS: All conjugates demonstrated good serum stability and specific binding to EphA2-expressing cells in vitro. In vivo biodistribution studies showed high uptake of (111)In-CHX-A″-DTPA-DS-8895a and (89)Zr-Df-Bz-NCS-DS-8895a in EphA2-expressing xenograft models, with no specific uptake in normal tissues. In comparison, retention of (125)I-DS-8895a in tumors was lower because of internalization of the radioconjugate and dehalogenation. These results were confirmed by SPECT/MR and PET/MR. EphA2 receptor saturation was observed at the 30 mg/kg dose. CONCLUSION: Molecular imaging of tumor uptake of DS-8895a allows noninvasive measurement of EphA2 expression in tumors in vivo and determination of receptor saturation. (89)Zr-Df-Bz-NCS-DS-8895a is suited for human bioimaging trials on the basis of superior imaging characteristics and will inform DS-8895a dose assessment and patient response evaluation in clinical trials.


Assuntos
Anticorpos Monoclonais Humanizados/química , Transformação Celular Neoplásica , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Receptor EphA2/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Zircônio/química , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Linhagem Celular Tumoral , Desferroxamina/análogos & derivados , Desferroxamina/química , Feminino , Humanos , Isotiocianatos/química , Camundongos , Ácido Pentético/química , Controle de Qualidade , Receptor EphA2/imunologia , Distribuição Tecidual
20.
Clin Cancer Res ; 19(21): 5984-93, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24045184

RESUMO

PURPOSE: CS-1008 (tigatuzumab; phase I/II), an antihuman death receptor 5 (DR5) agonist, induces apoptosis and has cytotoxic activity against human cancer cell lines. This study reports on the preclinical validation of (111)In-labeled anti-DR5 humanized antibody CS-1008 as a diagnostic tool to study the DR5 occupancy in patients with cancer and establish dose ranges for receptor saturation kinetics in vivo. EXPERIMENTAL DESIGN: CS-1008 was radiolabeled and characterized for DR5 binding and labeling efficiency on TRAIL-sensitive DR5-positive colorectal cancer cells (COLO 205 and WiDr). Pharmacokinetic and biodistribution studies were conducted in BALB/c nu/nu mice bearing COLO 205, WiDr, or DR5-negative CT26 colon tumors. Planar gamma camera imaging and computerized tomography (CT) images were obtained to study receptor occupancy in vivo. RESULTS: Scatchard analysis showed high and specific binding affinity (Kd, 1.05 ± 0.12 nmol/L) of (111)In-labeled CS-1008. (111)In-labeled CS-1008 was specifically taken up in mice bearing COLO 205 and WiDr tumors with prolonged tumor retention (26.25 ± 2.85%ID/g vs. 12.20 ± 2.24 at 168 hours post injection; n = 5, SD), and uptake correlated both with DR5 expression on tumor cells and antitumor activity. DR5 saturation was shown in vivo via both biodistribution studies and planar gamma camera imaging/CT imaging of (111)In-labeled CS-1008. Saturation of DR5 corresponded to maximal in vivo antitumor efficacy. CONCLUSIONS: Imaging of DR5 receptor occupancy in vivo correlates with tumor concentration and in vivo efficacy, and is a novel molecular imaging technique that can be used to determine receptor occupancy and effective dose levels of DR5 agonist antibodies in the clinic.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Imagem Molecular , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Radioisótopos de Índio , Marcação por Isótopo , Cinética , Camundongos , Ligação Proteica , Cintilografia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...