Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 173(2): 609-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24691881

RESUMO

Biological pretreatment of lignocellulosic biomass by fungi can represent a low-cost and eco-friendly alternative to physicochemical methods to facilitate enzymatic hydrolysis. However, fungal metabolism can cause cellulose loss and it is therefore necessary to use the appropriate fungal strain-biomass type combination. In this work, the effects of biological pretreatments carried out by five different fungi on enzymatic hydrolysis of wheat straw were investigated. The best results were obtained with a Ceriporiopsis subvermispora strain, which minimized weight and cellulose losses and gave the highest net sugar yield (calculated with respect to the holocellulose content of the untreated straw), up to 44 % after a 10-week pretreatment, more than doubling the yields obtained with the other isolates. Moreover, prolonging the pretreatment from 4 up to 10 weeks produced a 2-fold increase, up to 60 %, in digestibility (sugar yield, calculated considering the holocellulose content of the pretreated material). The hemicellulose content of the pretreated material resulted inversely correlated with digestibility, and it could thus be utilized as an index of the pretreatment efficacy. Finally, a correlation was also found between digestibility and the difference between the absorbance values at 290 and 320 nm of pretreated wheat straw extracts.


Assuntos
Fungos/isolamento & purificação , Fungos/metabolismo , Lignina/metabolismo , Triticum/química , beta-Glucosidase/metabolismo , Biomassa , Etanol/química , Fermentação , Hidrólise , Lignina/química , Peso Molecular , Água/química
2.
Enzyme Microb Technol ; 50(6-7): 304-10, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22500897

RESUMO

Bioconversion of lignocellulosic biomass to fuel requires a hydrolysis step to obtain fermentable sugars, generally accomplished by fungal enzymes. Large-scale screening of different microbial strains would provide optimal enzyme cocktails for any target feedstock. The aim of this study was to screen a large collection of Trichoderma sp. strains for the hydrolytic potential towards switchgrass (Panicum virgatum L.). Strains were cultivated in a small-scale system and assayed in micro-plates for xylanase and cellulase activities. The population distributions of these traits are reported after growth on switchgrass in comparison with cellulose. The distribution profiles suggest that the growth on switchgrass strongly promotes xylanase production. The IK4 strain displayed the highest xylanase activity after growth on switchgrass (133U/mL). Enzymes (10FPU/g substrate) from IK4 were compared with those from 2 cellulolytic Trichoderma strains and a commercial enzyme in saccharification time-course experiments on untreated and pretreated switchgrass and on an artificial substrate. Samples were analysed by DNS assay and by an oxygraphic method for sugar equivalent or glucose concentration. On the untreated substrate, IK4 enzymes even outperformed a 5-fold load of commercial enzyme, suggesting that xylanase or accessory enzymes are a limiting factor on this type of recalcitrant substrate. On the other substrates, IK4 preparations showed intermediate behaviour if compared with the commercial enzyme at 10FPU/g substrate and at 5-fold load. IK4 also nearly halved the time to release 50% of the hydrolysable sugar equivalents (T(50%)), with respect to the other preparations at the same enzymatic load. DNS assay and oxygraphic method gave highly correlated results for the 3 saccharified substrates. The study suggests that accessory enzymes like xylanase play a key role in improving the performance of cellulase preparations on herbaceous lignocellulosic feedstocks like switchgrass.


Assuntos
Celulases/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Panicum/metabolismo , Trichoderma/metabolismo , Biocombustíveis , Biomassa , Ensaios de Triagem em Larga Escala/métodos , Hidrólise , Lignina/metabolismo , Trichoderma/classificação , Trichoderma/crescimento & desenvolvimento
3.
Biotechnol Bioeng ; 107(3): 461-8, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20517987

RESUMO

Bioconversion of lignocellulosic biomass to fuel requires a hydrolysis step to obtain fermentable sugars, generally accomplished by fungal enzymes. An assorted library of cellulolytic microbial strains should facilitate the development of optimal enzyme cocktails specific for locally available feedstocks. Only a limited number of strains can be simultaneously assayed in screening based on large volume cultivation methods, as in shake flasks. This study describes a miniaturization strategy aimed at allowing parallel assessment of large numbers of fungal strains. Trichoderma strains were cultivated stationary on microcrystalline cellulose using flat bottom 24-well plates containing an agarized medium. Supernatants obtained by a rapid centrifugation step of the whole culture plates were evaluated for extracellular total cellulase activity, measured as filter paper activity, using a microplate-based assay. The results obtained were consistent with those observed in shake-flask experiments and more than 300 Trichoderma strains were accordingly characterized for cellulase production. Five strains, displaying on shake-flasks at least 80% of the activity shown by the hyper-cellulolytic mutant Trichoderma Rut-C30, were correctly recognized by the screening on 24-well plates, demonstrating the feasibility of this approach. Cellulase activity distribution for the entire Trichoderma collection is also reported. One strain (T. harzianum Ba8/86) displayed the closest profile to the reference strain Rut-C30 in time course experiments. The method is scalable and addresses a major bottleneck in screening programs, allowing small-scale parallel cultivation and rapid supernatant extraction. It can also be easily integrated with high-throughput enzyme assays and could be suitable for automation.


Assuntos
Celulose/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Programas de Rastreamento/métodos , Trichoderma/metabolismo , Ágar/química , Centrifugação , Meios de Cultura/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...