Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(19): 21837-21844, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32295338

RESUMO

Mechanical transfer of high-performing thin-film devices onto arbitrary substrates represents an exciting opportunity to improve device performance, explore nontraditional manufacturing approaches, and paves the way for soft, conformal, and flexible electronics. Using a two-dimensional boron nitride release layer, we demonstrate the transfer of AlGaN/GaN high-electron mobility transistors (HEMTs) to arbitrary substrates through both direct van der Waals bonding and with a polymer adhesive interlayer. No device degradation was observed because of the transfer process, and a significant reduction in device temperature (327-132 °C at 600 mW) was observed when directly bonded to a silicon carbide (SiC) wafer relative to the starting wafer. With the use of a benzocyclobutene (BCB) adhesion interlayer, devices were easily transferred and characterized on Kapton and ceramic films, representing an exciting opportunity for integration onto arbitrary substrates. Upon reduction of this polymer adhesive layer thickness, the AlGaN/GaN HEMTs transferred onto a BCB/SiC substrate resulted in comparable peak temperatures during operation at powers as high as 600 mW to the as-grown wafer, revealing that by optimizing interlayer characteristics such as thickness and thermal conductivity, transferrable devices on polymer layers can still improve performance outputs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...