Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4471, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796480

RESUMO

Working memory (WM) is the ability to maintain and manipulate information 'in mind'. The neural codes underlying WM have been a matter of debate. We simultaneously recorded the activity of hundreds of neurons in the lateral prefrontal cortex of male macaque monkeys during a visuospatial WM task that required navigation in a virtual 3D environment. Here, we demonstrate distinct neuronal activation sequences (NASs) that encode remembered target locations in the virtual environment. This NAS code outperformed the persistent firing code for remembered locations during the virtual reality task, but not during a classical WM task using stationary stimuli and constraining eye movements. Finally, blocking NMDA receptors using low doses of ketamine deteriorated the NAS code and behavioral performance selectively during the WM task. These results reveal the versatility and adaptability of neural codes supporting working memory function in the primate lateral prefrontal cortex.


Assuntos
Macaca mulatta , Memória de Curto Prazo , Neurônios , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Masculino , Neurônios/fisiologia , Realidade Virtual , Ketamina/farmacologia , Navegação Espacial/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Phys Rev E ; 108(5-1): 054404, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115483

RESUMO

Although temporal coding through spike-time patterns has long been of interest in neuroscience, the specific structures that could be useful for spike-time codes remain highly unclear. Here, we introduce an analytical approach, using techniques from discrete mathematics, to study spike-time codes. As an initial example, we focus on the phenomenon of "phase precession" in the rodent hippocampus. During navigation and learning on a physical track, specific cells in a rodent's brain form a highly structured pattern relative to the oscillation of population activity in this region. Studies of phase precession largely focus on its role in precisely ordering spike times for synaptic plasticity, as the role of phase precession in memory formation is well established. Comparatively less attention has been paid to the fact that phase precession represents one of the best candidates for a spike-time neural code. The precise nature of this code remains an open question. Here, we derive an analytical expression for a function mapping points in physical space to complex-valued spikes by representing individual spike times as complex numbers. The properties of this function make explicit a specific relationship between past and future in spike patterns of the hippocampus. Importantly, this mathematical approach generalizes beyond the specific phenomenon studied here, providing a technique to study the neural codes within precise spike-time sequences found during sensory coding and motor behavior. We then introduce a spike-based decoding algorithm, based on this function, that successfully decodes a simulated animal's trajectory using only the animal's initial position and a pattern of spike times. This decoder is robust to noise in spike times and works on a timescale almost an order of magnitude shorter than typically used with decoders that work on average firing rate. These results illustrate the utility of a discrete approach, based on the structure and symmetries in spike patterns across finite sets of cells, to provide insight into the structure and function of neural systems.


Assuntos
Encéfalo , Hipocampo , Animais , Potenciais de Ação , Algoritmos , Modelos Neurológicos
3.
J Vis Exp ; (62)2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22525737

RESUMO

Screening compounds for in vivo activity can be used as a first step to identify candidates that may be developed into pharmacological agents. We developed a novel nanoinjection/electrophysiology assay that allows the detection of bioactive modulatory effects of compounds on the function of a neuronal circuit that mediates the escape response in Drosophila melanogaster. Our in vivo assay, which uses the Drosophila Giant Fiber System (GFS, Figure 1) allows screening of different types of compounds, such as small molecules or peptides, and requires only minimal quantities to elicit an effect. In addition, the Drosophila GFS offers a large variety of potential molecular targets on neurons or muscles. The Giant Fibers (GFs) synapse electrically (Gap Junctions) as well as chemically (cholinergic) onto a Peripheral Synapsing Interneuron (PSI) and the Tergo Trochanteral Muscle neuron (TTMn. The PSI to DLMn (Dorsal Longitudinal Muscle neuron) connection is dependent on Dα7 nicotinic acetylcholine receptors (nAChRs). Finally, the neuromuscular junctions (NMJ) of the TTMn and the DLMn with the jump (TTM) and flight muscles (DLM) are glutamatergic. Here, we demonstrate how to inject nanoliter quantities of a compound, while obtaining electrophysiological intracellular recordings from the Giant Fiber System and how to monitor the effects of the compound on the function of this circuit. We show specificity of the assay with methyllycaconitine citrate (MLA), a nAChR antagonist, which disrupts the PSI to DLMn connection but not the GF to TTMn connection or the function of the NMJ at the jump or flight muscles. Before beginning this video it is critical that you carefully watch and become familiar with the JoVE video titled "Electrophysiological Recordings from the Giant Fiber Pathway of D. melanogaster" from Augustin et al, as the video presented here is intended as an expansion to this existing technique. Here we use the electrophysiological recordings method and focus in detail only on the addition of the paired nanoinjections and monitoring technique.


Assuntos
Drosophila melanogaster/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Nanotecnologia/métodos , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Aconitina/administração & dosagem , Aconitina/análogos & derivados , Animais , Citratos/administração & dosagem , Inseticidas , Antagonistas Nicotínicos/administração & dosagem
4.
Toxicon ; 56(8): 1398-407, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20723555

RESUMO

Finding compounds that affect neuronal or muscular function is of great interest as potential therapeutic agents for a variety of neurological disorders. Alternative applications for these compounds include their use as molecular probes as well as insecticides. We have developed a bioassay that requires small amounts of compounds and allows for unbiased screening of biological activity in vivo. For this, we paired administering compounds in a non-invasive manner with simultaneous electrophysiological recordings from a well-characterized neuronal circuit, the Giant Fiber System of Drosophila melanogaster, which mediates the escape response of the fly. The circuit encompasses a variety of neurons with cholinergic, glutamatergic, and electrical synapses as well as neuromuscular junctions. Electrophysiological recordings from this system allow for the detection of compound-related effects against any molecular target on these components. Here, we provide evidence that this novel bioassay works with small molecules such as the cholinergic receptor blocker mecamylamine hydrochloride and the potassium channel blocker tetraethylammonium hydroxide, as well as with venom from Conus brunneus and isolated conopeptides. Conopeptides have been developed into powerful drugs, such as the painkillers Prialt™ and Xen2174. However, most conopeptides have yet to be characterized, revealing the need for a rapid and straightforward screening method. Our findings show that mecamylamine hydrochloride, as well as the α-conotoxin ImI, which is known to be an antagonist of the human α7 nicotinic acetylcholine receptor, efficiently disrupted the synaptic transmission of a Drosophila α7 nicotinic acetylcholine receptor-dependent pathway in our circuit but did not affect the function of neurons with other types of synapses. This demonstrates that our bioassay is a valid tool for screening for compounds relevant to human health.


Assuntos
Bioensaio/métodos , Conotoxinas/toxicidade , Drosophila melanogaster , Rede Nervosa/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Conotoxinas/isolamento & purificação , Mecamilamina/toxicidade , Rede Nervosa/fisiologia , Tetraetilamônio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...