Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JDS Commun ; 4(3): 191-195, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37360119

RESUMO

Feed is often offered to a cow in the milking unit of an automated milking system. This offering provides nutrients but also acts as a reward to the cow for entering the unit. To complement the partial total mixed ration and to enable handling, flow, and delivery within this mechanized system, this offering is usually a mix of feeds that are combined and manufactured into a feed pellet. The objective of this experiment was to compare 4 different pelleting formulation strategies and measure the effects of feed preference in lactating Jersey cattle. To test the objective, a taste preference experiment was conducted with 8 multiparous lactating Jersey cattle (289 ± 25.3 d in milk, 26.0 ± 2.45 kg of milk yield, 19.36 ± 1.29 kg of dry matter intake). Four formulation strategies were tested including (1) a pellet containing feeds commonly included in the concentrate mixture of a total mixed ration, including 43.1% corn grain, 26.3% dried distillers grains, 3.18% soybean meal, and 5.6% vitamin and mineral premix (CMIX), (2) a pellet of dry corn gluten feed (CGF), (3) a pellet including feedstuffs that are considered to be highly palatable (53.2% wheat middling, 15.7% dried corn distillers grains and solubles, 15.2% cane molasses, and 1.81% oregano (FLVR), and (4) a high-energy pellet (ENG) consisting of 61% corn grain and 26.2% wheat middlings. Cows were offered 0.50 kg of each in a randomized arrangement within the feed bunk for 1 h or until the feed was fully consumed. According to the procedure, cows were offered all 4 treatments for the first 4 d, then the most preferred feed for each cow was removed, and the remaining 3 feeds were offered for 3 d. The process was repeated for the last 2 d. Feed preference was ranked from 1 to 4 with 1 being the most preferred and 4 the least. The resulting preference ranking was CGF (1.25 ± 0.463), FLVR (2.5 ± 0.926), CMIX (2.88 ± 0.835), and ENG (3.13 ± 0.991). These results were subsequently examined utilizing the Plackett-Luce analysis to examine the probability animals would choose a given pellet first based on the current data set. The analysis determined probabilities of first choice as 78.6 ± 0.601% CGF, 9.38 ± 0.438% FLVR, 4.94 ± 0.453% ENG, and 7.11 ± 0.439% CMIX. A Z-test was also conducted to determine if the percentage a treatment will be chosen first differed from the mean value of no preference at 25%. Corn gluten feed and ENG differed from the mean value while no difference was observed for FLVR and CMIX. Results suggest that animals exhibit a high degree of preference for CGF pellets and that this preference is greater than pellets containing other feed ingredients. Alternatively, cows appeared to exhibit the lowest preference for a high-energy pellet containing mostly corn and wheat middlings.

2.
JDS Commun ; 3(2): 101-105, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36339736

RESUMO

Hydrolyzed feather meal (HFM) is a feedstuff high in rumen undegraded protein (RUP) that can be used as an effective source of metabolizable protein for dairy cattle. Because the production process may vary, the rumen degradability and intestinal digestibility of HFM may also vary. Additionally, some processes may incorporate additional blood into the final product to result in feather meal with poultry blood. To determine the rumen degradability and intestinal digestibility of these products, several laboratory assays can be used; the common assays are the mobile bag (MOB), modified three-step (MTS), and Ross (ROS) assays. Although all 3 assays determine RUP digestibility, they vary in whether they are performed in situ, in vitro, or both. The objective of this study was to evaluate the ruminal degradability and intestinal digestibility of HFM originating from processes that differ in their inclusion of blood, and to compare the MOB, MTS, and ROS assays. Ten samples of HFM, which were identified by the suppliers as HFM with little blood (n = 5) and with more blood (n = 5), were spot-sampled, collected from 10 production plants across the United States, and subjected to all 3 assays. Assay type had an effect on RUP, total-tract crude protein (CP) digestibility, and the amount of RUP digested. A significant effect was observed on RDP and RUP concentrations for blood inclusion; no effect was detected for total-tract CP digestibility. We found no difference in RUP digestibility for assay or blood inclusion. There was also no interaction of the effect of assay or blood inclusion. Results suggest that even though there are differences in chemical composition in HFM associated with the inclusion of blood, such as ash and crude fat, few if any differences are observed in intestinal digestion of protein. Although the assays varied in their estimates of rumen undegraded protein, MOB and MTS yielded the most similar values. However, all 3 assays resulted in similar estimates of RUP digestibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...