Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Dis ; 103(7): 1507-1514, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025904

RESUMO

Spread and in-field spatial patterns of vines infected with grapevine red blotch virus (GRBV) were documented in Oregon vineyards using field sampling, molecular diagnostics, and spatial analysis. Grapevine petiole tissue collected from 2013 to 2016 was tested using quantitative polymerase chain reaction for GRBV. At Jacksonville in southern Oregon, 3.1% of vines were infected with GRBV in 2014, and GRBV incidence reached 58.5% of study vines by 2016. GRBV-infected plants and GRBV-uninfected plants were spatially aggregated at this site in 2015, and infected plants were spatially associated between years 2015 and 2016. In a southern Oregon vineyard near Talent, 10.4% of vines were infected with GRBV in 2014, and infection increased annually to 21.5% in 2016. At Talent, distribution of the infected vines was spatially associated across all years. GRBV infection was highest at Yamhill, in the Willamette Valley, where 31.7% of the tested vines had GRBV infection in 2014. By 2016, 59.2% of the vines tested positive for GRBV. Areas of aggregation increased and were spatially associated across all years. From 2013 to 2015, GRBV was not detected at Milton-Freewater in eastern Oregon. Spatial patterns of GRBV infection support evidence of spread by a mobile insect vector. GRBV is a significant threat to Oregon wine grape production because of its drastic year-over-year spread in affected vineyards.


Assuntos
Geminiviridae , Vitis , Animais , Fazendas , Geminiviridae/fisiologia , Oregon , Doenças das Plantas/virologia , Vitis/virologia
2.
Phytopathology ; 107(9): 1062-1068, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28569126

RESUMO

Agrobacterium is a genus of soilborne gram-negative bacteria. Members carrying oncogenic plasmids can cause crown gall disease, which has significant economic costs, especially for the orchard and nursery industries. Early and rapid detection of pathogenic Agrobacterium spp. is key to the management of crown gall disease. To this end, we designed oligonucleotide primers and probes to target virD2 for use in a molecular diagnostic tool that relies on isothermal amplification and lateral-flow-based detection. The oligonucleotide tools were tested in the assay and evaluated for detection limit and specificity in detecting alleles of virD2. One set of primers that successfully amplified virD2 when used with an isothermal recombinase was selected. Both tested probes had detection limits in picogram amounts of DNA. Probe 1 could detect all tested pathogenic isolates that represented most of the diversity of virD2. Finally, the coupling of lateral-flow detection to the use of these oligonucleotide primers in isothermal amplification helped to reduce the onerousness of the process, and alleviated reliance on specialized tools necessary for molecular diagnostics. The assay is an advancement for the rapid molecular detection of pathogenic Agrobacterium spp.


Assuntos
Agrobacterium/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico , Agrobacterium/genética , DNA Bacteriano/genética , Genoma Bacteriano , Filogenia , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...