Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin EEG Neurosci ; 48(6): 367-375, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28530154

RESUMO

Transcranial direct current stimulation (tDCS) is increasingly researched as an adjuvant to motor rehabilitation for children with hemiparesis. The optimal method for the primary motor cortex (M1) somatotopic localization for tDCS electrode placement has not been established. The objective, therefore, was to determine the location of the M1 derived using the 10/20 electroencephalography (EEG) system and transcranial magnetic stimulation (TMS) in children with hemiparesis (CWH) and a comparison group of typically developing children (TDC). We hypothesized a difference in location for CWH but not for TDC. The 2 locations were evaluated in 47 children (21 CWH, 26 TDC). Distances between the locations were measured pending presence of a motor evoked potential. Distances between the EEG and TMS locations that exceeded the 2.5 cm × 2.5 cm rubber electrode area are reported in percentages [95% confidence interval] in CWH-nonlesioned hemisphere was 68.8% [41.3-89.0], lesioned: 85.7% [57.2-98.2]; TDC-dominant hemisphere 73.9% [51.6-89.8], nondominant: 82.6% [61.2-95.0]. Distances that exceeded the 3 × 5 cm electrode sponge area in CWH-nonlesioned was 25.0% [7.3-52.4], lesioned was 28.6% [8.4-58.1]; TDC-dominant was 52.2% [30.6-73.2], nondominant was 43.5 [23.2-65.5]). Distances that exceeded the 5 × 7 cm electrode sponge area in CWH-nonlesioned was 18.8% [4.0-45.6] and lesioned was 21.4% [4.7-50.8]; TDC-dominant was 21.7% [7.5-43.7] and nondominant was 26.1% [10.2-48.4]. Individual variability in brain somatotopic organization may influence surface scalp localization of underlying M1 in children regardless of neurologic impairment. Findings suggest further investigation of optimal tDCS electrode placement. EEG and TMS methods reveal variability in localizing M1 in children regardless of stroke diagnosis. This study was registered on clinicaltrials.gov NCT02015338.


Assuntos
Eletrodos , Eletroencefalografia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Adolescente , Criança , Eletroencefalografia/métodos , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos
2.
MMWR Morb Mortal Wkly Rep ; 66(10): 274-277, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28301447

RESUMO

Despite measures to educate the public about the dangers of elemental mercury, spills continue to occur in homes, schools, health care facilities, and other settings, endangering the public's health and requiring costly cleanup. Mercury is most efficiently absorbed by the lungs, and exposure to high levels of mercury vapor after a release can cause cough, sore throat, shortness of breath, nausea, vomiting, diarrhea, headaches, and visual disturbances (1). Children and fetuses are most susceptible to the adverse effects of mercury vapor exposure. Because their organ systems are still developing, children have increased respiratory rates, and they are closer to the ground where mercury vapors are most highly concentrated (2). To summarize key features of recent mercury spills and lessons learned, five state health departments involved in the cleanup (Iowa, Michigan, Missouri, North Carolina, and Wisconsin) compiled data from various sources on nonthermometer mercury spills from 2012 to 2015. The most common sites of contamination were residences, schools and school buses, health care facilities, and commercial and industrial facilities. Children aged <18 years were present in about one third of the spills, with approximately one in seven incidents resulting in symptoms consistent with acute mercury exposure. To protect the public's health after a mercury spill, it is important that local, state, and federal agencies communicate and coordinate effectively to ensure a quick response, and to minimize the spread of contamination. To reduce the number of mercury spills that occur in the United States, public health officials should increase awareness about exchange programs for mercury-containing items and educate school and health care workers about sources of mercury and how to dispose of them properly.


Assuntos
Vazamento de Resíduos Químicos , Intoxicação por Mercúrio/prevenção & controle , Mercúrio , Prática de Saúde Pública , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...