Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genome Ed ; 3: 719190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35005700

RESUMO

The ultimate goal of technology development in genome editing is to enable precisely targeted genomic changes in any cells or organisms. Here we describe protoplast systems for precise and efficient DNA sequence changes with preassembled Cas9 ribonucleoprotein (RNP) complexes in Arabidopsis thaliana, Nicotiana benthamiana, Brassica rapa, and Camelina sativa. Cas9 RNP-mediated gene disruption with dual gRNAs could reach ∼90% indels in Arabidopsis protoplasts. To facilitate facile testing of any Cas9 RNP designs, we developed two GFP reporter genes, which led to sensitive detection of nonhomologous end joining (NHEJ) and homology-directed repair (HDR), with editing efficiency up to 85 and 50%, respectively. When co-transfected with an optimal single-stranded oligodeoxynucleotide (ssODN) donor, precise editing of the AtALS gene via HDR reached 7% by RNPs. Significantly, precise mutagenesis mediated by preassembled primer editor (PE) RNPs led to 50% GFP reporter gene recovery in protoplasts and up to 4.6% editing frequency for the specific AtPDS mutation in the genome. The rapid, versatile and efficient gene editing by CRISPR RNP variants in protoplasts provides a valuable platform for development, evaluation and optimization of new designs and tools in gene and genomic manipulation and is applicable in diverse plant species.

2.
Mol Ecol ; 27(8): 1833-1847, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29087012

RESUMO

Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture.


Assuntos
Arabidopsis/genética , Brassicaceae/genética , Doenças das Plantas/genética , Pseudomonas syringae/patogenicidade , Arabidopsis/microbiologia , Brassicaceae/microbiologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/microbiologia , Pseudomonas syringae/genética , Rizosfera , Ácido Salicílico/metabolismo
3.
Nature ; 521(7551): 213-6, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25731164

RESUMO

Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gß, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gß subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Peptídeo Hidrolases/metabolismo , Imunidade Vegetal/imunologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/imunologia , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flagelina/imunologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Imunidade Inata , Sistema de Sinalização das MAP Quinases , Proteólise , Pseudomonas aeruginosa/patogenicidade , Receptores de Quinase C Ativada , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
4.
Nat Plants ; 1(6)2015.
Artigo em Inglês | MEDLINE | ID: mdl-27019743

RESUMO

Host-associated microbiomes influence host health. However, it is unclear whether genotypic variations in host organisms influence the microbiome in ways that have adaptive consequences for the host. Here, we show that wild accessions of Arabidopsis thaliana differ in their ability to associate with the root-associated bacterium Pseudomonas fluorescens, with consequences for plant fitness. In a screen of 196 naturally occurring Arabidopsis accessions we identified lines that actively suppress Pseudomonas growth under gnotobiotic conditions. We planted accessions that support disparate levels of fluorescent Pseudomonads in natural soils; 16S ribosomal RNA sequencing revealed that accession-specific differences in the microbial communities were largely limited to a subset of Pseudomonadaceae species. These accession-specific differences in Pseudomonas growth resulted in enhanced or impaired fitness that depended on the host's ability to support Pseudomonas growth, the specific Pseudomonas strains present in the soil and the nature of the stress. We suggest that small host-mediated changes in a microbiome can have large effects on host health.

5.
Nat Plants ; 12015.
Artigo em Inglês | MEDLINE | ID: mdl-27054042

RESUMO

Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively. The association of SGT1b with COI1 is direct and is independent of the Arabidopsis SKP1 protein, ASK1. We further show that COI1 is a client protein of SGT1b-HSP70-HSP90 chaperone complexes and that the complexes function in hormone signalling by stabilizing the COI1 protein. This study extends the SGT1b-HSP90 client protein list and broadens the functional scope of SGT1b-HSP70-HSP90 chaperone complexes.

6.
Plant Cell ; 25(11): 4755-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24285796

RESUMO

Multicellular eukaryotic organisms are attacked by numerous parasites from diverse phyla, often simultaneously or sequentially. An outstanding question in these interactions is how hosts integrate signals induced by the attack of different parasites. We used a model system comprised of the plant host Arabidopsis thaliana, the hemibiotrophic bacterial phytopathogen Pseudomonas syringae, and herbivorous larvae of the moth Trichoplusia ni (cabbage looper) to characterize mechanisms involved in systemic-induced susceptibility (SIS) to T. ni herbivory caused by prior infection by virulent P. syringae. We uncovered a complex multilayered induction mechanism for SIS to herbivory. In this mechanism, antiherbivore defenses that depend on signaling via (1) the jasmonic acid-isoleucine conjugate (JA-Ile) and (2) other octadecanoids are suppressed by microbe-associated molecular pattern-triggered salicylic acid (SA) signaling and infection-triggered ethylene signaling, respectively. SIS to herbivory is, in turn, counteracted by a combination of the bacterial JA-Ile mimic coronatine and type III virulence-associated effectors. Our results show that SIS to herbivory involves more than antagonistic signaling between SA and JA-Ile and provide insight into the unexpectedly complex mechanisms behind a seemingly simple trade-off in plant defense against multiple enemies.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Etilenos/metabolismo , Herbivoria , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Isoleucina/metabolismo , Mariposas , Mutação , Oxilipinas/metabolismo , Folhas de Planta , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Transdução de Sinais
8.
Plant Cell ; 25(5): 1507-22, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23645631

RESUMO

Artificial microRNA (amiRNA) approaches offer a powerful strategy for targeted gene manipulation in any plant species. However, the current unpredictability of amiRNA efficacy has limited broad application of this promising technology. To address this, we developed epitope-tagged protein-based amiRNA (ETPamir) screens, in which target mRNAs encoding epitope-tagged proteins were constitutively or inducibly coexpressed in protoplasts with amiRNA candidates targeting single or multiple genes. This design allowed parallel quantification of target proteins and mRNAs to define amiRNA efficacy and mechanism of action, circumventing unpredictable amiRNA expression/processing and antibody unavailability. Systematic evaluation of 63 amiRNAs in 79 ETPamir screens for 16 target genes revealed a simple, effective solution for selecting optimal amiRNAs from hundreds of computational predictions, reaching ∼100% gene silencing in plant cells and null phenotypes in transgenic plants. Optimal amiRNAs predominantly mediated highly specific translational repression at 5' coding regions with limited mRNA decay or cleavage. Our screens were easily applied to diverse plant species, including Arabidopsis thaliana, tobacco (Nicotiana benthamiana), tomato (Solanum lycopersicum), sunflower (Helianthus annuus), Catharanthus roseus, maize (Zea mays) and rice (Oryza sativa), and effectively validated predicted natural miRNA targets. These screens could improve plant research and crop engineering by making amiRNA a more predictable and manageable genetic and functional genomic technology.


Assuntos
Inativação Gênica , MicroRNAs/genética , Proteínas de Plantas/genética , Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Immunoblotting , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , MicroRNAs/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/metabolismo , Plantas Geneticamente Modificadas , Protoplastos/citologia , Protoplastos/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Nicotiana/metabolismo , Zea mays/genética , Zea mays/metabolismo
9.
PLoS Pathog ; 9(3): e1003217, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23505373

RESUMO

Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic pathway (trehalose biosynthesis) as a potent virulence factor that allows it to replicate in the intercellular environment of a leaf.


Assuntos
Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa/metabolismo , Trealose/biossíntese , Parede Celular , Glucanos/biossíntese , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Mutação , Fenótipo , Células Vegetais , Folhas de Planta , Plantas Geneticamente Modificadas , Pseudomonas aeruginosa/patogenicidade , Trealose/metabolismo , Fatores de Virulência/metabolismo , Xilanos/biossíntese , alfa-Amilases/genética , alfa-Amilases/metabolismo
10.
PLoS One ; 6(11): e27364, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096563

RESUMO

Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luciferases de Vaga-Lume/metabolismo , Protoplastos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Teste de Complementação Genética , Humanos , Luciferases de Vaga-Lume/genética , Ligação Proteica , Mapas de Interação de Proteínas
11.
Nature ; 464(7287): 418-22, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20164835

RESUMO

Innate immunity represents the first line of inducible defence against microbial infection in plants and animals. In both kingdoms, recognition of pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs, respectively), such as flagellin, initiates convergent signalling pathways involving mitogen-activated protein kinase (MAPK) cascades and global transcriptional changes to boost immunity. Although Ca(2+) has long been recognized as an essential and conserved primary mediator in plant defence responses, how Ca(2+) signals are sensed and relayed into early MAMP signalling is unknown. Using a functional genomic screen and genome-wide gene expression profiling, here we show that four calcium-dependent protein kinases (CDPKs) are Ca(2+)-sensor protein kinases critical for transcriptional reprogramming in plant innate immune signalling. Unexpectedly, CDPKs and MAPK cascades act differentially in four MAMP-mediated regulatory programs to control early genes involved in the synthesis of defence peptides and metabolites, cell wall modifications and redox signalling. Transcriptome profile comparison suggests that CDPKs are the convergence point of signalling triggered by most MAMPs. Double, triple and quadruple cpk mutant plants display progressively diminished oxidative burst and gene activation induced by the 22-amino-acid peptide flg22, as well as compromised pathogen defence. In contrast to negative roles of calmodulin and a calmodulin-activated transcription factor in plant defence, the present study reveals Ca(2+) signalling complexity and demonstrates key positive roles of specific CDPKs in initial MAMP signalling.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/imunologia , Imunidade Inata/imunologia , Proteínas Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Flagelina/química , Flagelina/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Sistema de Sinalização das MAP Quinases , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Explosão Respiratória , Transcrição Gênica
12.
Methods Mol Biol ; 323: 13-25, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16739564

RESUMO

A well-controlled growth environment with plants that are not unduly stressed is essential for Arabidopsis molecular biology research. Even if they do not kill the plants outright, insect pests and microbial pathogens can cause subtle changes in gene expression or plant metabolism that affect experimental results. Therefore, regular scouting for infestations, frequent cleaning of plant growth areas, proper disposal of dead or diseased plant material, and controlled access to the greenhouses or growth chambers will help to make experiments more reproducible. Powdery mildew, a fungal pathogen, and arthropod pests, including aphids, thrips, fungus gnats, and spider mites, are the most common greenhouse problems. Biological control methods such as parasitoid wasps and Bacillus thuringiensis crystal toxin can be used to contain some insect infestations. However, if an infestation gets out of hand despite reasonable precautions, insecticide or fungicide spraying by a licensed applicator may be necessary. Bacterial and viral infections of Arabidopsis, though they do occur, tend to be less common and can usually be controlled by maintaining optimal growth conditions and promptly disposing of dead or diseased plant material.


Assuntos
Arabidopsis/fisiologia , Botânica/métodos , Doenças das Plantas , Animais , Afídeos , Arabidopsis/microbiologia , Botrytis , Fungos/metabolismo , Controle de Insetos , Controle Biológico de Vetores , Praguicidas , Tetranychidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...