Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922989

RESUMO

Emerald ash borer (EAB, Agrilus planipennis) is an invasive killer of ash trees (Fraxinus spp.) in North America and Europe. Ash species co-evolved with EAB in their native range in Asia are mostly resistant, although the precise mechanism(s) remain unclear. Very little is also known about EAB or ash tree microbiomes. We performed the first joint comparison of phloem mycobiome and metabolites between a native and a nonnative ash species, infested and uninfested with EAB, in conjunction with investigation of larval mycobiome. Phloem mycobiome communities differed between the tree species, but both were unaffected by EAB infestation. Several indicator taxa in the larval gut shared a similarly high relative abundance only with the native host trees. Widely targeted metabolomics revealed 24 distinct metabolites in native trees and 53 metabolites in nonnative trees, respectively, that differed in relative content between infested and uninfested trees only in one species. Interestingly, four metabolites shared a strong relationship with the phloem mycobiomes, majority of which affected only the native trees. Collectively, our results demonstrate a complex interplay between host tree chemistry and mycobiome, and suggest the shared relationships between the mycobiomes of the native host tree and EAB may reflect their shared co-evolution.

2.
Insect Sci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38562016

RESUMO

Identifying cryptic species poses a substantial challenge to both biologists and naturalists due to morphological similarities. Bemisia tabaci is a cryptic species complex containing more than 44 putative species; several of which are currently among the world's most destructive crop pests. Interpreting and delimiting the evolution of this species complex has proved problematic. To develop a comprehensive framework for species delimitation and identification, we evaluated the performance of distinct data sources both individually and in combination among numerous samples of the B. tabaci species complex acquired worldwide. Distinct datasets include full mitogenomes, single-copy nuclear genes, restriction site-associated DNA sequencing, geographic range, host speciation, and reproductive compatibility datasets. Phylogenetically, our well-supported topologies generated from three dense molecular markers highlighted the evolutionary divergence of species of the B. tabaci complex and suggested that the nuclear markers serve as a more accurate representation of B. tabaci species diversity. Reproductive compatibility datasets facilitated the identification of at least 17 different cryptic species within our samples. Native geographic range information provides a complementary assessment of species recognition, while the host range datasets provide low rate of delimiting resolution. We further summarized different data performances in species classification when compared with reproductive compatibility, indicating that combination of mtCOI divergence, nuclear markers, geographic range provide a complementary assessment of species recognition. Finally, we represent a model for understanding and untangling the cryptic species complexes based on the evidence from this study and previously published articles.

4.
Microorganisms ; 12(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257994

RESUMO

The fungal order Entomophthorales in the Zoopagomycota includes many fungal pathogens of arthropods. This review explores six genera in the subfamily Erynioideae within the family Entomophthoraceae, namely, Erynia, Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. This is the largest subfamily in the Entomophthorales, including 126 described species. The species diversity, global distribution, and host range of this subfamily are summarized. Relatively few taxa are geographically widespread, and few have broad host ranges, which contrasts with many species with single reports from one location and one host species. The insect orders infected by the greatest numbers of species are the Diptera and Hemiptera. Across the subfamily, relatively few species have been cultivated in vitro, and those that have require more specialized media than many other fungi. Given their potential to attack arthropods and their position in the fungal evolutionary tree, we discuss which species might be adopted for biological control purposes or biotechnological innovations. Current challenges in the implementation of these species in biotechnology include the limited ability or difficulty in culturing many in vitro, a correlated paucity of genomic resources, and considerations regarding the host ranges of different species.

5.
Annu Rev Entomol ; 69: 239-258, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37708417

RESUMO

Since the discovery of the ash tree (Fraxinus spp.) killer emerald ash borer (EAB; Agrilus planipennis) in the United States in 2002 and Moscow, Russia in 2003, substantial detection and management efforts have been applied to contain and monitor its spread and mitigate impacts. Despite these efforts, the pest continues to spread within North America. It has spread to European Russia and Ukraine and is causing sporadic outbreaks in its native range in China. The dynamics of EAB's range expansion events appear to be linked to the lack of resistant ash trees in invaded ranges, facilitated by the abundance of native or planted North American susceptible ash species. We review recently gained knowledge of the range expansion of EAB; its ecological, economic, and social impacts; and past management efforts with their successes and limitations. We also highlight advances in biological control, mechanisms of ash resistance, and new detection and management approaches under development, with the aim of guiding more effective management.


Assuntos
Besouros , Fraxinus , Animais , Larva , América do Norte
6.
Microb Ecol ; 86(2): 900-913, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36478022

RESUMO

The sources of fungal symbionts of insects are not well understood, yet the acquisition and assembly of fungal communities in mobile insect hosts have important implications for the ecology of migratory insects and their plant hosts. To determine potential sources of fungi associated with the fall armyworm (Spodoptera frugiperda), we characterized the fungal communities associated with four different ecological compartments (insects, infested leaves, uninfested leaves, and soil) and estimated the contributions of each of these potential sources to the insect's fungal microbiome. Results show that insect fungal community composition was distinct from and more varied than the composition of fungal communities in the environment of those insects (plants and soil). Among the sources evaluated, on average we found a surprisingly large apparent contribution from other congeneric S. frugiperda insect larvae (ca. 25%) compared to the contribution from soil or plant sources (< 5%). However, a large proportion of the insect microbiome could not be attributed to the sampled sources and was instead attributed to unknown sources (ca. 50%). Surprisingly, we found little evidence for exchange of fungal taxa, with the exception of a Fusarium oxysporum and a Cladosporium sp. OTU, between larvae and the infested leaves on which they fed. Together, our results suggest that mobile insects such as S. frugiperda obtain their fungal symbionts from a variety of sources, not limited to plants and soil, but including conspecific insects and other unsampled environmental sources, and that transmission among insects may play an important role in acquisition of fungal symbionts.


Assuntos
Insetos , Microbiota , Animais , Spodoptera/microbiologia , Plantas , Larva
7.
Phytopathology ; 112(6): 1273-1283, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34907789

RESUMO

Sudden death syndrome (SDS) of soybean is a damaging disease caused by the fungus Fusarium virguliforme. Since this pathogen was first reported in the southern U.S. state of Arkansas in 1971, it has spread throughout the midwestern United States. The SDS pathogen primarily colonizes roots but also produces toxins that translocate to and damage leaves. Previous studies have detected little to no genetic differentiation among isolates, suggesting F. virguliforme in North America has limited genetic diversity and a clonal population structure. Yet, isolates vary in virulence to roots and leaves. We characterized a set of F. virguliforme isolates from the midwestern United States, representing a south to north latitudinal gradient from Arkansas to Minnesota. Ten previously tested microsatellite loci were used to genotype isolates, and plant assays were conducted to assess virulence. Three distinct population clusters were differentiated across isolates. Although isolates ranged in virulence classes from low to very high, little correlation was found between virulence phenotype and cluster membership. Similarly, population structure and geographic location were not highly correlated. However, the earliest diverging cluster had the lowest genetic diversity and was detected only in southern states, whereas the two other clusters were distributed across the Midwest and were predominant in Minnesota. One of the midwestern clusters had the greatest genetic diversity and was found along the northern edge of the known distribution. The results support three genetically distinct population clusters of F. virguliforme in the United States, with two clusters contributing most to spread of this fungus across the Midwest.


Assuntos
Fusarium , Doenças das Plantas , Fusarium/genética , Variação Genética , Doenças das Plantas/microbiologia , Glycine max/microbiologia , Estados Unidos
8.
Fungal Biol ; 125(7): 551-559, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34140151

RESUMO

The emerald ash borer (EAB) is an exotic forest pest that has killed millions of ash trees in the United States and Canada, resulting in an ecological disaster and billions of dollars in economic losses of urban landscape and forest trees. The beetle was first detected in Michigan in 2002 and has spread through much of the Eastern and Midwestern U.S., reaching Minnesota in 2009. Since then, it has spread across the state and poses a great risk to the more than 1 billion ash trees in Minnesota. The larval stage of EAB creates wounds on trees as they feed on the inner bark, causing disruption of water and sap flow that results in tree death. The fungal community associated with EAB larval galleries is poorly understood and the role these fungi may play in tree death is not known. This study describes fungi isolated from EAB larval galleries sampled throughout the main geographic areas of Minnesota where ash is affected by EAB. Fungal cultures were identified by extracting genomic DNA and sequencing the ITS region of the rDNA. Results from 1126 isolates reveal a diverse assemblage of fungi and three functional guilds comprised of canker pathogens, wood decay, and entomopathogenic fungi. The most common canker-associated genera were Cytospora followed by Phaeoacremonium, Paraconiothyrium, Coniothyrium, Nectria, Diplodia, and Botryosphaeria. Fungi in the Basidiomycota were nearly all wood decay causing fungi and many were species of pioneer colonizing genera including Sistotrema, Irpex, Peniophora, Phlebia and Ganoderma. Some of these fungi seriously affect urban trees, having the potential to cause rapid wood decay resulting in hazardous tree situations. Several entomopathogenic genera with the potential for biological control of EAB were also isolated from galleries. Purpureocillium was the most commonly isolated genus, followed by Beauveria, Clonostachys, Lecanicillium, Akanthomyces, Cordyceps, Microcera, Tolypocladium, and Pochonia. The results identify important fungal functional guilds that are occupying a new niche in ash trees resulting from EAB and include fungi that may accelerate decline in tree health, increase hazard tree situations, or may provide options for biological control of this destructive invasive insect.


Assuntos
Besouros , Fraxinus , Fungos , Animais , Biodiversidade , Besouros/microbiologia , Fraxinus/microbiologia , Fraxinus/parasitologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/fisiologia , Larva
9.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33200960

RESUMO

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Assuntos
Fusarium , Fusarium/genética , Filogenia , Doenças das Plantas , Plantas
10.
Evol Appl ; 13(9): 2264-2283, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005223

RESUMO

Biological control is a promising approach to reduce plant diseases caused by nematodes to ensure high productivity in agricultural production. Large-scale analyses of genetic variation in fungal species used for biocontrol can generate knowledge regarding interaction mechanisms that can improve efficacy of biocontrol applications. In this study, we performed a genome-wide association study (GWAS) for in vitro antagonism against the root lesion nematode Pratylenchus penetrans in 53 previously genome re-sequenced strains of the biocontrol fungus Clonostachys rosea. Nematode mortality in C. rosea potato dextrose broth (PDB) culture filtrates was highly variable and showed continuous variation (p < .001) between strains, indicating a polygenic inheritance. Twenty-one strains produced culture filtrates with higher (p ≤ .05) nematode mortality compared with the PDB control treatment, while ten strains lowered (p ≤ .05) the mortality. The difference in in vitro antagonism against P. penetrans correlated with antagonism against the soybean cyst nematode Heterodera glycines, indicating lack of host specificity in C. rosea. An empirical Bayesian multiple hypothesis testing approach identified 279 single nucleotide polymorphism markers significantly (local false sign rate < 10-10) associated with the trait. Genes present in the genomic regions associated with nematicidal activity included several membrane transporters, a chitinase and genes encoding proteins predicted to biosynthesize secondary metabolites. Gene deletion strains of the predicted nonribosomal peptide synthetase genes nps4 and nps5 were generated and showed increased (p ≤ .001) fungal growth and conidiation rates compared to the wild type. Deletion strains also exhibited reduced (p < .001) nematicidal activity and reduced (p ≤ .05) biocontrol efficacy against nematode root disease and against fusarium foot rot on wheat. In summary, we show that the GWAS approach can be used to identify biocontrol factors in C. rosea, specifically the putative nonribosomal peptide synthetases NPS4 and NPS5.

11.
IMA Fungus ; 11: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974122

RESUMO

Different hypotheses have been proposed to interpret the observed unusual ITS (internal transcribed spacer) sequences in Ophiocordyceps sinensis. The coexistence of diverged ITS paralogs in a single genome was previously shown by amplifying the ITS region from mono-ascospore isolates using specific primers designed for different ITS paralog groups. Among those paralogs, are AT-biased ITS sequences which were hypothesized to result from repeat-induced point mutation (RIP). This is a process that detects and mutates repetitive DNA and frequently leads to epigenetic silencing, and these mutations have been interpreted as pseudogenes. Here we investigate the occurrence and frequency of ITS pseudogenes in populations of O. sinensis using large-scale sampling, and discusses the implications of ITS pseudogenes for fungal phylogenetic and evolutionary studies. Our results demonstrate a wide distribution of ITS pseudogenes amongst different geographic populations, and indicate how ITS pseudogenes can contribute to the reconstruction of the evolutionary history of the species.

12.
Insects ; 11(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408656

RESUMO

China is implementing an extensive urban forestry plan in Xiongan New Area (XNA), a new city in Hebei province. The city has been designated to serve Beijing's noncapital functions and promote the integration of the broader Beijing-Tianjin-Hebei city-region. As part of a green initiative to minimize environmental impacts and its carbon footprint, a massive urban forestry system has been planned on an unprecedented scale, expected to cover over 600 km2 by 2030. Using science to inform policy, one major goal is to simultaneously minimize impacts of invasive species, while making urban forests more resilient to potential invasive species threats. In this review, we introduce these urban forestry plans such as basic concepts and principles for afforestation, tree species to be planted, delineation of existing pests already established, and expected forest invasive species of concern threatening the new area. Finally, we introduce a framework for invasive pest management strategies in XNA based on a "big data" approach and decision system to minimize impacts of invasive species. This new approach to urban forestry has the potential to become an exemplary global model for urban forestry planning, one that integrates research activities focused on forest health surveys and monitoring with sustainable forestry management. Finally, we provide an overview of the forest health policy required for the design of an unprecedentedly large new urban forest from initial planning to full implementation of an integrated forest management program.

13.
Mol Biol Evol ; 37(10): 2838-2856, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421770

RESUMO

Ecological diversity in fungi is largely defined by metabolic traits, including the ability to produce secondary or "specialized" metabolites (SMs) that mediate interactions with other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation in BGC composition reflects the diversity of their SM products. Recent studies have documented surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is known about how this population-level variation is inherited across macroevolutionary timescales. Here, we applied a novel linkage-based algorithm to reveal previously unexplored dimensions of diversity in BGC composition, distribution, and repertoire across 101 species of Dothideomycetes, which are considered the most phylogenetically diverse class of fungi and known to produce many SMs. We predicted both complementary and overlapping sets of clustered genes compared with existing methods and identified novel gene pairs that associate with known secondary metabolite genes. We found that variation among sets of BGCs in individual genomes is due to nonoverlapping BGC combinations and that several BGCs have biased ecological distributions, consistent with niche-specific selection. We observed that total BGC diversity scales linearly with increasing repertoire size, suggesting that secondary metabolites have little structural redundancy in individual fungi. We project that there is substantial unsampled BGC diversity across specific families of Dothideomycetes, which will provide a roadmap for future sampling efforts. Our approach and findings lend new insight into how BGC diversity is generated and maintained across an entire fungal taxonomic class.


Assuntos
Ascomicetos/metabolismo , Vias Biossintéticas/genética , Ascomicetos/genética , Redes Reguladoras de Genes , Melaninas/metabolismo , Anotação de Sequência Molecular , Família Multigênica , Naftóis/metabolismo
14.
Phytopathology ; 110(8): 1388-1397, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32286919

RESUMO

Fungal biological control of soybean cyst nematodes (SCN) is an important component of integrated pest management for soybean. However, very few fungal biological control agents are available in the market. In this study, we have screened fungi previously isolated from SCN cysts over 3 years from a long-term crop rotation field experiment for their ability to antagonize SCN using (i) parasitism, (ii) egg hatch inhibition, and (iii) J2 mortality. We evaluated egg parasitism using an in-vitro egg parasitism bioassays and scored parasitism using the egg parasitic index (EPI) and fluorescent microscopy. The ability of these fungi to produce metabolites causing egg hatch inhibition and J2 mortality was assessed in bioassays using filter-sterilized culture filtrates. We identified 10 high-performing isolates each for egg parasitism and toxicity toward SCN eggs and J2s and repeated the tests after storage for 1 year of cryopreservation at -80°C to validate the durability of biocontrol potential of the chosen 20 isolates. Although the parasitic ability changed slightly for the majority of strains after cryopreservation, they still scored 5/10 on EPI scales. There were no differences in the ability of fungi to produce antinemic metabolites after cryopreservation.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Cistos , Micobioma , Nematoides , Animais , Agentes de Controle Biológico , Doenças das Plantas , Glycine max
15.
J Nematol ; 52: 1-17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180383

RESUMO

The soybean cyst nematode (SCN) is the most important pest on soybean, a major crop worldwide. The SCN is considered both parasitic and pathogenic as it derives nutrition from the host and manipulates host physiology to do so. Currently, there are no commercially available chemicals that are specific, environmentally safe and cost effective to control SCN levels. Crop rotation, use of host resistance and other cultural practices remain the main management strategies. The need for bioprospecting other methods of controlling SCN is paramount, and fungi show promise in that respect. Several studies have evaluated fungi and fungal products as biocontrol options against plant-parasitic nematodes. This review discusses fungal genera isolated from the SCN with potential for use as biocontrol agents and the effects of their secondary metabolites on various stages of SCN development. The review also summarizes efforts to control SCN using soil amendments that could potentially impact fungal communities in the soil.The soybean cyst nematode (SCN) is the most important pest on soybean, a major crop worldwide. The SCN is considered both parasitic and pathogenic as it derives nutrition from the host and manipulates host physiology to do so. Currently, there are no commercially available chemicals that are specific, environmentally safe and cost effective to control SCN levels. Crop rotation, use of host resistance and other cultural practices remain the main management strategies. The need for bioprospecting other methods of controlling SCN is paramount, and fungi show promise in that respect. Several studies have evaluated fungi and fungal products as biocontrol options against plant-parasitic nematodes. This review discusses fungal genera isolated from the SCN with potential for use as biocontrol agents and the effects of their secondary metabolites on various stages of SCN development. The review also summarizes efforts to control SCN using soil amendments that could potentially impact fungal communities in the soil.

16.
Mol Ecol ; 29(5): 940-955, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32031723

RESUMO

Gene gain/loss in the context of gene family dynamics plays an important role in evolutionary processes as organisms, particularly invasive species, adapt to new environments or niches. One notable example of this is the duplication of digestive proteases in some parasitic insects and helminths to meet nutritional requirements during animal parasitism. However, whether gene family expansion participates in the adaptation of a plant parasite nematode to its host remains unknown. Here, we compared the newly sequenced genomes of the pinewood nematode, Bursaphelenchus xylophilus, with the genomes of free-living, animal-parasitic and plant-parasitic nematodes. The results showed gene expansions occurring in 51 gene families in B. xylophilus, especially in xenobiotic detoxification pathways, including flavin monooxygenase (FMO), cytochrome P450 (CYP450), short chain dehydrogenase (SDR), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), UDP-glucuronosyltransferase (UGT) and glutathione S-transferase (GST). Although a majority of these expansions probably resulted from gene duplications, nine ADH genes were potentially acquired by horizontal gene transfer (HGT) from fungi. From the transcriptomes of B. xylophilus treated with pine saplings and terpenes, candidate xenobiotic detoxification genes were identified. We propose that host defence chemicals led to gene family expansions of xenobiotic detoxification pathways in B. xylophilus facilitating its survival in pine resin ducts. This study contributes to a better understanding of how a parasitic nematode adapts to its host.


Assuntos
Adaptação Biológica/genética , Família Multigênica , Pinus/parasitologia , Doenças das Plantas/parasitologia , Terpenos/metabolismo , Tylenchida/genética , Animais , Duplicação Gênica , Transferência Genética Horizontal , Genes de Helmintos , Inativação Metabólica , Pinus/química , Transcriptoma
17.
Phytopathology ; 110(3): 603-614, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31631807

RESUMO

Although fungal endophytes are commonly investigated for their ability to deter microbial plant pathogens, few studies have examined the activity of fungal root endophytes against nematodes. The soybean cyst nematode (SCN; Heterodera glycines), the most severe yield-limiting pathogen of soybean (Glycine max), is commonly managed through rotation of soybean with corn (Zea mays), a nonhost of the SCN. A total of 626 fungal endophytes were isolated from surface-sterilized corn and soybean roots from experimental plots in which soybean and corn had been grown under annual rotation and under 1, 3, 5, and 35 years of continuous monoculture. Fungal isolates were grouped into 401 morphotypes, which were clustered into 108 operational taxonomic units (OTUs) based on 99% sequence similarity of the full internal transcribed spacer region. Morphotype representatives within each OTU were grown in malt extract broth and in a secondary metabolite-inducing medium buffered with ammonium tartrate, and their culture filtrates were tested for nematicidal activity against SCN juveniles. A majority of OTUs containing isolates with nematicidal culture filtrates were in the order Hypocreales, with the genus Fusarium being the most commonly isolated nematicidal genus from corn and soybean roots. Less commonly isolated taxa from soybean roots included the nematophagous fungi Hirsutella rhossiliensis, Metacordyceps chlamydosporia, and Arthrobotrys iridis. Root endophytic fungal diversity in soybean was positively correlated with SCN density, suggesting that the SCN plays a role in shaping the soybean root endophytic community.


Assuntos
Cistos , Glycine max , Animais , Fungos , Doenças das Plantas , Zea mays
18.
Front Microbiol ; 10: 2671, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824456

RESUMO

Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the number 1 pathogen of the important economic crop soybean. Bacteria represent potential biocontrol agents of the SCN, but few studies have characterized the dynamics of bacterial communities associated with cysts under different crop rotation sequences. The bacterial communities in SCN cysts in a long-term soybean-corn crop rotation experiment were investigated over 2 years. The crop sequences included long-term soybean monoculture (Ss), years 1-5 of soybean following 5 years corn (S1-S5), years 1 and 2 of corn following 5 years soybean (C1 and C2), and soybean-corn annual rotation (Sa and Ca). The bacterial 16S rRNA V4 region was amplified from DNA isolated from SCN cysts collected in spring at planting, midseason (2 months later), and fall at harvest and sequenced on the Illumina MiSeq platform. The SCN cyst microbiome was dominated by Proteobacteria followed by Actinobacteria, Bacteroidetes, and Verrucomicrobia. The bacterial community composition was influenced by both crop sequence and season. Although differences by crop sequence were not significant in the spring of each year, bacterial communities in cysts from annual rotation (Sa and Ca) or crop sequences of early years of monoculture following a 5-year rotation of the alternate crop (S1 and C1) became rapidly differentiated by crop over a single growing season. In the fall, genera of cyst bacteria associated with soybean crop sequences included Rhizobacter, Leptothrix, Cytophaga, Chitinophaga, Niastella, Streptomyces, and Halangium. The discovery of diverse bacterial taxa in SCN cysts and their dynamics across crop rotation sequences provides invaluable information for future development of biological control of the SCN.

19.
BMC Genomics ; 20(1): 120, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732559

RESUMO

BACKGROUND: Genes involved in production of secondary metabolites (SMs) in fungi are exceptionally diverse. Even strains of the same species may exhibit differences in metabolite production, a finding that has important implications for drug discovery. Unlike in other eukaryotes, genes producing SMs are often clustered and co-expressed in fungal genomes, but the genetic mechanisms involved in the creation and maintenance of these secondary metabolite biosynthetic gene clusters (SMBGCs) remains poorly understood. RESULTS: In order to address the role of genome architecture and chromosome scale structural variation in generating diversity of SMBGCs, we generated chromosome scale assemblies of six geographically diverse isolates of the insect pathogenic fungus Tolypocladium inflatum, producer of the multi-billion dollar lifesaving immunosuppressant drug cyclosporin, and utilized a Hi-C chromosome conformation capture approach to address the role of genome architecture and structural variation in generating intraspecific diversity in SMBGCs. Our results demonstrate that the exchange of DNA between heterologous chromosomes plays an important role in generating novelty in SMBGCs in fungi. In particular, we demonstrate movement of a polyketide synthase (PKS) and several adjacent genes by translocation to a new chromosome and genomic context, potentially generating a novel PKS cluster. We also provide evidence for inter-chromosomal recombination between nonribosomal peptide synthetases located within subtelomeres and uncover a polymorphic cluster present in only two strains that is closely related to the cluster responsible for biosynthesis of the mycotoxin aflatoxin (AF), a highly carcinogenic compound that is a major public health concern worldwide. In contrast, the cyclosporin cluster, located internally on chromosomes, was conserved across strains, suggesting selective maintenance of this important virulence factor for infection of insects. CONCLUSIONS: This research places the evolution of SMBGCs within the context of whole genome evolution and suggests a role for recombination between chromosomes in generating novel SMBGCs in the medicinal fungus Tolypocladium inflatum.


Assuntos
Cromossomos Fúngicos/genética , Ciclosporina/metabolismo , Rearranjo Gênico , Variação Genética , Hypocreales/genética , Hypocreales/metabolismo , Metabolismo Secundário/genética , Duplicação Cromossômica , Evolução Molecular , Genoma Fúngico/genética , Família Multigênica/genética , Recombinação Genética , Especificidade da Espécie
20.
mBio ; 9(5)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279281

RESUMO

The cycloundecapeptide cyclosporin A (CsA) was first isolated from the insect-pathogenic fungus Tolypocladium inflatum for its antifungal activity and later developed as an immunosuppressant drug. However, the full biosynthetic mechanism of CsA remains unknown and has puzzled researchers for decades. In this study, the biosynthetic gene cluster is suggested to include 12 genes encoding enzymes, including the nonribosomal peptide synthetase (NRPS) (SimA) responsible for assembling the 11 amino acid substrates of cyclosporine and a polyketide synthase (PKS) (SimG) to mediate the production of the unusual amino acid (4R)-4-[(E)-2-butenyl]-4-methyl-l-threonine (Bmt). Individual deletion of 10 genes, isolation of intermediates, and substrate feeding experiments show that Bmt is biosynthesized by three enzymes, including SimG, SimI, and SimJ. The substrate d-alanine is catalyzed from l-alanine by alanine racemase SimB. Gene cluster transcription is regulated by a putative basic leucine zipper (bZIP)-type protein encoded by the cluster gene SimL We also found that the cluster cyclophilin (SimC) and transporter (SimD) genes contribute to the tolerance of CsA in the CsA-producing fungus. We also found that cyclosporine production could enable the fungus to outcompete other fungi during cocultivation tests. Deletion of the CsA biosynthetic genes also impaired fungal virulence against insect hosts. Taking all the data together, in addition to proposing a biosynthetic pathway of cyclosporines, the results of this study suggest that CsA produced by this fungus might play important ecological roles in fungal environment interactions.IMPORTANCE The cyclopeptide cyclosporin A was first isolated from the filamentous fungus Tolypocladium inflatum showing antifungal activity and was later developed as an immunosuppressant drug. We report the biosynthetic mechanism of cyclosporines that are mediated by a cluster of genes encoding NRPS and PKS controlled by a bZIP-type transcriptional regulator. The two unusual amino acids Bmt and d-Ala are produced by the PKS pathway and alanine racemase, respectively. The cyclophilin and transporter genes jointly contribute to fungal self-protection against cyclosporines. Cyclosporine confers on T. inflatum the abilities to outcompete other fungi in competitive interactions and to facilitate fungal infection of insect hosts, which therefore benefits fungal adaptations to different environments.


Assuntos
Adaptação Fisiológica , Antibiose , Antifúngicos/metabolismo , Ciclosporina/metabolismo , Hypocreales/fisiologia , Animais , Vias Biossintéticas/genética , Tolerância a Medicamentos , Enzimas/genética , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Hypocreales/genética , Hypocreales/metabolismo , Insetos/microbiologia , Família Multigênica , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...