Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(30): 15628-40, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27231347

RESUMO

One mode of γ-globin gene silencing involves a GATA-1·FOG-1·Mi2ß repressor complex that binds to the -566 GATA site relative to the (A)γ-globin gene cap site. However, the mechanism of how this repressor complex is assembled at the -566 GATA site is unknown. In this study, we demonstrate that the O-linked N-acetylglucosamine (O-GlcNAc) processing enzymes, O-GlcNAc-transferase (OGT) and O-GlcNAcase (OGA), interact with the (A)γ-globin promoter at the -566 GATA repressor site; however, mutation of the GATA site to GAGA significantly reduces OGT and OGA promoter interactions in ß-globin locus yeast artificial chromosome (ß-YAC) bone marrow cells. When WT ß-YAC bone marrow cells are treated with the OGA inhibitor Thiamet-G, the occupancy of OGT, OGA, and Mi2ß at the (A)γ-globin promoter is increased. In addition, OGT and Mi2ß recruitment is increased at the (A)γ-globin promoter when γ-globin becomes repressed in postconception day E18 human ß-YAC transgenic mouse fetal liver. Furthermore, we show that Mi2ß is modified with O-GlcNAc, and both OGT and OGA interact with Mi2ß, GATA-1, and FOG-1. Taken together, our data suggest that O-GlcNAcylation is a novel mechanism of γ-globin gene regulation mediated by modulating the assembly of the GATA-1·FOG-1·Mi2ß repressor complex at the -566 GATA motif within the promoter.


Assuntos
Inativação Gênica/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Elementos de Resposta , beta-N-Acetil-Hexosaminidases/metabolismo , gama-Globinas/biossíntese , Animais , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Humanos , Células K562 , Camundongos , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta-N-Acetil-Hexosaminidases/genética , gama-Globinas/genética
2.
Adv Drug Deliv Rev ; 62(13): 1285-98, 2010 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-20654663

RESUMO

The retinoids are a class of compounds that are structurally related to vitamin A. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids exert their effects through a variety of binding proteins including cellular retinol-binding protein (CRBP), retinol-binding proteins (RBP), cellular retinoic acid-binding protein (CRABP), and nuclear receptors i.e. retinoic acid receptor (RAR) and retinoid x receptor (RXR). Because of the pleiotropic effects of retinoids, understanding the function of these binding proteins and nuclear receptors assists us in developing compounds that have specific effects. This review summarizes our current understanding of how retinoids are processed and act with an emphasis on the application of retinoids in cancer treatment and prevention.


Assuntos
Neoplasias/tratamento farmacológico , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Retinoides/metabolismo , Retinoides/uso terapêutico , Proteínas de Ligação ao Retinol/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Retinoides/farmacologia , Proteínas Celulares de Ligação ao Retinol/metabolismo , Tretinoína/metabolismo , Vitamina A/metabolismo
3.
Biochem Pharmacol ; 79(7): 948-54, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19912993

RESUMO

Fenretinide, a synthetic retinoid, is known to induce apoptosis in various cancer cells. However, the mechanism by which fenretinide induces apoptosis remains unclear. The current study examines the mechanisms of fenretinide-induced apoptosis in human hepatoma cells. The induction of Nur77 and the cytoplasmic distribution of Nur77 induced by fenretinide were positively correlated with the apoptotic effect of fenretinide in HCC cells. The sensitivity of Huh-7 cells was related to Nur77 translocation and targeting mitochondria, whereas the mechanism of resistance for HepG2 cells seemed due to Nur77 accumulating in the nucleus. The intracellular location of Nur77 was also associated with the differential capability of fenretinide-induced ROS generation in these two cell lines. In addition, the knockdown of Nur77 expression by siRNA greatly reduced fenretinide-induced apoptosis and cleaved caspase 3 in Huh-7 cells. Therefore, our findings demonstrate that fenretinide-induced apoptosis of HCC cells is Nur77 dependent and that the intracellular localization of Nur77 dictates the sensitivity of the HCC cells to fenretinide-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Fenretinida/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/análise , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , RNA Mensageiro/análise , Espécies Reativas de Oxigênio , Receptores do Ácido Retinoico/genética
4.
J Exp Clin Med ; 1(1): 23-30, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27635169

RESUMO

Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...