Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 7(13): e14161, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31267722

RESUMO

Physical activity is emerging as an alternative nonpharmaceutical strategy to prevent and treat a variety of cardiovascular diseases due to its cardiac and skeletal muscle beneficial effects. Oxidative stress occurs in skeletal muscle of chronic heart failure (CHF) patients with possible impact on muscle function decline. We determined the effect of voluntary-free wheel running (VFWR) in preventing protein damage in Tgαq*44 transgenic mice (Tg) characterized by a delayed CHF progression. In the early (6 months) and transition (12 months) phase of CHF, VFWR increased the daily mean distance covered by Tg mice eliminating the difference between Tg and WT present before exercise at 12 months of age (WT Pre-EX 3.62 ± 1.66 vs. Tg Pre-EX 1.51 ± 1.09 km, P < 0.005; WT Post-EX 5.72 ± 3.42 vs. Tg Post-EX 4.17 ± 1.8 km, P > 0.005). This effect was concomitant with an improvement of in vivo cardiac performance [(Cardiac Index (mL/min/cm2 ): 6 months, untrained-Tg 0.167 ± 0.005 vs. trained-Tg 0.21 ± 0.003, P < 0.005; 12 months, untrained-Tg 0.1 ± 0.009 vs. trained-Tg 0.133 ± 0.005, P < 0.005]. Such effects were associated with a skeletal muscle antioxidant response effective in preventing oxidative damage induced by CHF at the transition phase (untrained-Tg 0.438 ± 0.25 vs. trained-Tg 0.114 ± 0.010, P < 0.05) and with an increased expression of protein control markers (MuRF-1, untrained-Tg 1.12 ± 0.29 vs. trained-Tg 14.14 ± 3.04, P < 0.0001; Atrogin-1, untrained-Tg 0.9 ± 0.38 vs. trained-Tg 7.79 ± 2.03, P < 0.01; Cathepsin L, untrained-Tg 0.91 ± 0.27 vs. trained-Tg 2.14 ± 0.55, P < 0.01). At the end-stage of CHF (14 months), trained-Tg mice showed a worsening of physical performance (decrease in daily activity and weekly distance and time of activity) compared to trained age-matched WT in association with oxidative protein damage of a similar level to that of untrained-Tg mice (untrained-Tg 0.62 ± 0.24 vs. trained-Tg 0.64 ± 0.13, P > 0.05). Prolonged voluntary physical activity performed before the onset of CHF end-stage, appears to be a useful tool to increase cardiac function and to reduce skeletal muscle oxidative damage counteracting physical activity decline.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/métodos , Corrida , Animais , Catepsina L/genética , Catepsina L/metabolismo , Feminino , Coração/fisiologia , Insuficiência Cardíaca/prevenção & controle , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Front Physiol ; 10: 474, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118897

RESUMO

The aim of the study was to evaluate the expression levels of proteins related to mitochondrial biogenesis regulation and bioenergetics in vastus lateralis muscle biopsies from 16 elderly and 7 young people subjected to 14 days of bed-rest, causing atrophy, and subsequent 14 days of exercise training. Based on quantitative immunoblot analyses, in both groups a reduction of two key regulators of mitochondrial biogenesis/remodeling and activity, namely PGC-1α and Sirt3, was revealed during bed-rest, with a subsequent up-regulation after rehabilitation, indicating an involvement of PGC-1α-Sirt3 axis in response to the treatments. A difference was observed comparing the young and elderly subjects as, for both proteins, the abundance in the elderly was more affected by immobility and less responsive to exercise. The expression levels of TOM20 and Citrate Synthase, assayed as markers of outer mitochondrial membrane and mitochondrial mass, showed a noticeable sensitivity in the elderly group, where they were affected by bed-rest and rehabilitation recalling the pattern of PGC-1α. TOM20 and CS remained unchanged in young subjects. Single OXPHOS complexes showed peculiar patterns, which were in some cases dissimilar from PGC-1α, and suggest different influences on protein biogenesis and degradation. Overall, exercise was capable to counteract the effect of immobility, when present, except for complex V, which was markedly downregulated by bed-rest, but remained unaffected after rehabilitation, maybe as result of greater extent of degradation processes over biogenesis. Phosphorylation extent of AMPK, and its upstream activator LKB1, did not change after bed-rest and rehabilitation in either young or elderly subjects, suggesting that the activation of energy-sensing LKB1-AMPK signaling pathway was "missed" due to its transient nature, or was not triggered under our conditions. Our study demonstrates that, as far as the expression of various proteins related to mitochondrial biogenesis/remodeling, adaptations to bed-rest and rehabilitation in the two populations were different. The impact of bed-rest was greater in the elderly subjects, where the pattern (decrease after bed rest and recovery following rehabilitation) was accompanied by changes of mitochondrial mass. Modifications of protein abundance were matched with data obtained from gene expression analyses of four public human datasets focusing on related genes.

3.
J Bioenerg Biomembr ; 50(1): 33-52, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29209894

RESUMO

Glioblastomas epidemiology and aggressiveness demand for a well characterization of biochemical mechanisms of the cells. The discovery of oxidative tumours related to chemoresistance is changing the prevalent view of dysfunctional mitochondria in cancer cells. Thus, glioblastomas metabolism is now an area of intense research, wherein was documented a high heterogeneity in energy metabolism and in particular in mitochondrial OxPhos. We report results gained by investigating mitochondrial OxPhos and bioenergetics, in a model of three human glioblastoma cell lines characterized by a different PTEN gene status. Functional data are analysed in relation to the expression levels of some main transcription factors and signalling proteins, which can be involved in the regulation of mitochondrial biogenesis and activity. Collectively, our observations indicate for the three cell lines a similar bioenergetic phenotype maintaining a certain degree of mitochondrial oxidative activity, with some difference for PTEN-wild type SF767 cells respect to PTEN-deleted A172 and U87MG characterized by a loss-of-function point mutation of PTEN. SF767 has lower ATP content and higher ADP/ATP ratio, higher AMPK activating-phosphorylation evoking energy impairment, higher OxPhos complexes and PGC1α-Sirt3-p53 protein abundance, in line with a higher respiration. Finally, SF767 shows a similar mitochondrial energy supply, but higher non-phosphorylating respiration linked to dissipation of protonmotive force. Intriguingly, it is now widely accepted that a regulated mitochondrial proton leak attenuate ROS generation and in tumours may be at the base of pro-survival advantage and chemoresistance.


Assuntos
Metabolismo Energético , Glioblastoma/patologia , Mitocôndrias/metabolismo , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/ultraestrutura , Humanos , Mutação , Fosforilação Oxidativa , Força Próton-Motriz , Espécies Reativas de Oxigênio/metabolismo
4.
J Appl Physiol (1985) ; 123(2): 326-336, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522765

RESUMO

Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgαq*44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgαq*44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgαq*44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance.NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O2 delivery, were mainly responsible for the functional improvement.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Progressão da Doença , Feminino , Coração/fisiopatologia , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/fisiologia , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/metabolismo
5.
J Cell Biochem ; 117(2): 470-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26223201

RESUMO

Taking advantage from the peculiar features of the embryonic rat heart-derived myoblast cell line H9c2, the present study is the first to provide evidence for the expression of F1FO ATP synthase and of ATPase Inhibitory Factor 1 (IF1) on the surface of cells of cardiac origin, together documenting that they were affected through cardiac-like differentiation. Subunits of both the catalytic F1 sector of the complex (ATP synthase-ß) and of the peripheral stalk, responsible for the correct F1-FO assembly/coupling, (OSCP, b, F6) were detected by immunofluorescence, together with IF1. The expression of ATP synthase-ß, ATP synthase-b and F6 were similar for parental and differentiated H9c2, while the levels of OSCP increased noticeably in differentiated cells, where the results of in situ Proximity Ligation Assay were consistent with OSCP interaction within ecto-F1FO complexes. An opposite trend was shown by IF1 whose ectopic expression appeared greater in the parental H9c2. Here, evidence for the IF1 interaction with ecto-F1FO complexes was provided. Functional analyses corroborate both sets of data. i) An F1FO ATP synthase contribution to the exATP production by differentiated cells suggests an augmented expression of holo-F1FO ATP synthase on plasma membrane, in line with the increase of OSCP expression and interaction considered as a requirement for favoring the F1-FO coupling. ii) The absence of exATP generation by the enzyme, and the finding that exATP hydrolysis was largely oligomycin-insensitive, are in line in parental cells with the deficit of OSCP and suggest the occurrence of sub-assemblies together evoking more regulation by IF1.


Assuntos
Mioblastos/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Diferenciação Celular , Expressão Gênica , Células Hep G2 , Humanos , Hidrólise , Miocárdio/citologia , Proteínas/metabolismo , Ratos , Proteína Inibidora de ATPase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...