Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650362

RESUMO

Seasonal bud dormancy in perennial woody plants is a crucial and intricate process that is vital for the survival and development of plants. Over the past few decades, significant advancements have been made in understanding many features of bud dormancy, particularly in model species, where certain molecular mechanisms underlying this process have been elucidated. In this review, we provide an overview of recent molecular progress in understanding bud dormancy in trees, with a specific emphasis on the integration of common signaling and molecular mechanisms identified across different tree species. Additionally, we address some challenges that have emerged in the in-depth understanding of bud dormancy and offer insights for future studies.

2.
Nat Commun ; 12(1): 1123, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602938

RESUMO

Bud-break is an economically and environmentally important process in trees and shrubs from boreal and temperate latitudes, but its molecular mechanisms are poorly understood. Here, we show that two previously reported transcription factors, EARLY BUD BREAK 1 (EBB1) and SHORT VEGETATIVE PHASE-Like (SVL) directly interact to control bud-break. EBB1 is a positive regulator of bud-break, whereas SVL is a negative regulator of bud-break. EBB1 directly and negatively regulates SVL expression. We further report the identification and characterization of the EBB3 gene. EBB3 is a temperature-responsive, epigenetically-regulated, positive regulator of bud-break that provides a direct link to activation of the cell cycle during bud-break. EBB3 is an AP2/ERF transcription factor that positively and directly regulates CYCLIND3.1 gene. Our results reveal the architecture of a putative regulatory module that links temperature-mediated control of bud-break with activation of cell cycle.


Assuntos
Dormência de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Estações do Ano , Ácido Abscísico/metabolismo , Epigênese Genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Fenótipo , Proteínas de Plantas/genética , Populus/genética , Regiões Promotoras Genéticas/genética , Transcriptoma/genética
4.
Plant Biotechnol J ; 18(6): 1434-1443, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31799778

RESUMO

We investigated feasibility of the Full-length complementary DNA OvereXpression (FOX) system as a mutagenesis approach in poplar, using developing xylem tissue. The main goal was to assess the overall mutation rate and if the system will increase instances of mutants affected in traits linked to the xylem tissue. Indeed, we found a high mutation rate of 17.7%, whereas 80% of all mutants were significantly affected in cellulose, lignin and/or hemicellulose. Cell wall biosynthesis is a major process occurring during xylem development. Enrichment of mutants affected in cell wall composition suggests that the tissue source for the FOX library influenced the occurrence of mutants affected in a trait linked to this tissue. Additionally, we found that FLcDNAs from mutants affected in cell wall composition were homologous to genes known to be involved in cell wall biosynthesis and most recovered FLcDNAs corresponded to genes whose native expression was highest in xylem. We characterized in detail a mutant line with increased diameter. The phenotype was caused by a poplar homolog of LONELY GUY 1 (LOG1), which encodes an enzyme in cytokinin biosynthesis and significantly increased xylem proliferation. The causative role of LOG1 in the observed phenotype was further reaffirmed by elevated cytokinin concentration in the mutant and recapitulation overexpression experiment wherein multiple independent lines phenocopied the original FOX mutant. Our experiments show that the FOX approach can be efficiently used for gene discovery and molecular interrogation of traits specific to woody perennial growth and development.


Assuntos
Populus , Madeira , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Biblioteca Gênica , Lignina/metabolismo , Taxa de Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Madeira/genética , Madeira/metabolismo , Xilema/genética , Xilema/metabolismo
5.
Curr Biol ; 29(2): R68-R70, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30668953

RESUMO

Vegetative bud dormancy is an important adaptive process allowing survival over winter in trees from temperate and boreal regions. A recent discovery implicates a MADS-box transcription factor from poplar in regulation of both entry and release from dormancy.


Assuntos
Populus , Árvores , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas de Plantas
6.
PLoS One ; 13(12): e0208560, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540849

RESUMO

Using time-series transcriptomic data from poplar roots undergoing polyethylene glycol (PEG)-induced drought stress, we built a genetic network model of the involved putative molecular responses. We found that the network resembled a hierarchical structure. The highest hierarchical level in this structure is occupied by 9 genes, which we called superhubs because they were primarily connected to 18 hub genes, which are then connected to 2,934 terminal genes. We were only able to regenerate transgenic plants overexpressing two of the superhubs, suggesting that the majority of the superhubs might interfere with the regeneration process and did not allow recovery of transgenic plants. The two superhubs encode proteins with closest homology to JAZ3 and RAP2.6 genes of Arabidopsis and were consequently named PtaJAZ3 and PtaRAP2.6. PtaJAZ3 and PtaRAP2.6 overexpressing transgenic lines showed a significant increase in both root elongation and lateral root proliferation and these responses were specific for the drought stress conditions and were highly correlated with the levels of overexpression of the transgenes. Several lines of evidence suggest of regulatory interactions between the two superhubs. Both superhubs were significantly induced by methyl jasmonate (MeJA). Because jasmonate signaling involves ubiquitin-mediated proteasome degradation, treatment with proteasome inhibitor abolished the MeJA induction for both genes. PtaRAP2.6 was upregulated in PtaJAZ3 transgenics but PtaJAZ3 expression was not affected in the PtaRAP2.6 overexpressors. The discovery of the two genes and further future insights into the associated mechanisms can lead to improved understanding and novel approaches to regulate root architecture in relation to drought stress.


Assuntos
Redes Reguladoras de Genes , Proteínas de Plantas/metabolismo , Populus/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Acetatos/farmacologia , Algoritmos , Ciclopentanos/farmacologia , Secas , Redes Reguladoras de Genes/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polietilenoglicóis/farmacologia , Populus/metabolismo , Inibidores de Proteassoma/farmacologia , Fatores de Transcrição/genética , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
Front Plant Sci ; 9: 1505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459780

RESUMO

Growth and architectural traits in trees are economically and environmentally important and thus of considerable importance to the improvement of forest and fruit trees. These traits are complex and result from the operation of a number of molecular mechanisms. This review will focus on the regulation of crown architecture, secondary woody growth and adventitious rooting. These traits and processes have significant impact on deployment, management, and productivity of tree crops. The majority of the described work comes from experiments in model plants, poplar, apple, peach, and plum because these species allow functional analysis of the involved genes and have significant genomics resources. However, these studies convincingly show conserved mechanisms for elaboration of specific growth and architectural traits. The conservation of these mechanisms suggest that they can be used as a blueprint for the improvement of these traits and processes in phylogenetically diverse tree crops. We will specifically consider the involvement of flowering time, transcription factors and hormone-associated genes. The review will also discuss the impact of recent technological advances as well as the challenges to the dissection of these traits in trees.

8.
Nat Commun ; 9(1): 4173, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301891

RESUMO

In boreal and temperate ecosystems, temperature signal regulates the reactivation of growth (bud break) in perennials in the spring. Molecular basis of temperature-mediated control of bud break is poorly understood. Here we identify a genetic network mediating the control of bud break in hybrid aspen. The key components of this network are transcription factor SHORT VEGETATIVE PHASE-LIKE (SVL), closely related to Arabidopsis floral repressor SHORT VEGETATIVE PHASE, and its downstream target TCP18, a tree homolog of a branching regulator in Arabidopsis. SVL and TCP18 are downregulated by low temperature. Genetic evidence demonstrates their role as negative regulators of bud break. SVL mediates bud break by antagonistically acting on gibberellic acid (GA) and abscisic acid (ABA) pathways, which function as positive and negative regulators of bud break, respectively. Thus, our results reveal the mechanistic basis for temperature-cued seasonal control of a key phenological event in perennial plants.


Assuntos
Flores/genética , Redes Reguladoras de Genes , Hibridização Genética , Populus/genética , Ácido Abscísico/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Giberelinas/farmacologia , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
BMC Plant Biol ; 17(1): 224, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29179673

RESUMO

BACKGROUND: Bark plays important roles in photosynthate transport and storage, along with physical and chemical protection. Bark texture varies extensively among species, from smooth to fissured to deeply furrowed, but its genetic control is unknown. This study sought to determine the main genomic regions associated with natural variation in bark features and stem diameter. Quantitative trait loci (QTL) were mapped using an interspecific pseudo-backcross pedigree (Populus trichocarpa x P. deltoides and P. deltoides) for bark texture, bark thickness and diameter collected across three years, two sites and three biological replicates per site. RESULTS: QTL specific to bark texture were highly reproducible in shared intervals across sites, years and replicates. Significant positive correlations and co-localization between trait QTL suggest pleiotropic regulators or closely linked genes. A list of candidate genes with related putative function, location close to QTL maxima and with the highest expression level in the phloem, xylem and cambium was identified. CONCLUSION: Candidate genes for bark texture included an ortholog of Arabidopsis ANAC104 (PopNAC128), which plays a role in lignified fiber cell and ray development, as well as Pinin and Fasciclin (PopFLA) genes with a role in cell adhesion, cell shape and migration. The results presented in this study provide a basis for future genomic characterization of genes found within the QTL for bark texture, bark thickness and diameter in order to better understand stem and bark development in Populus and other woody perennial plants. The QTL mapping approach identified a list of prime candidate genes for further validation using functional genomics or forward genetics approaches.


Assuntos
Cromossomos de Plantas , Genes de Plantas , Casca de Planta/genética , Caules de Planta/genética , Populus/genética , Mapeamento Cromossômico , Casca de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Populus/anatomia & histologia , Locos de Características Quantitativas
10.
PLoS One ; 12(7): e0180527, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686626

RESUMO

Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.


Assuntos
Tamanho do Órgão/genética , Raízes de Plantas/genética , Populus/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento
11.
PLoS One ; 12(2): e0171532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158291

RESUMO

BACKGROUND: Present knowledge indicates a multilayered hierarchical gene regulatory network (ML-hGRN) often operates above a biological pathway. Although the ML-hGRN is very important for understanding how a pathway is regulated, there is almost no computational algorithm for directly constructing ML-hGRNs. RESULTS: A backward elimination random forest (BWERF) algorithm was developed for constructing the ML-hGRN operating above a biological pathway. For each pathway gene, the BWERF used a random forest model to calculate the importance values of all transcription factors (TFs) to this pathway gene recursively with a portion (e.g. 1/10) of least important TFs being excluded in each round of modeling, during which, the importance values of all TFs to the pathway gene were updated and ranked until only one TF was remained in the list. The above procedure, termed BWERF. After that, the importance values of a TF to all pathway genes were aggregated and fitted to a Gaussian mixture model to determine the TF retention for the regulatory layer immediately above the pathway layer. The acquired TFs at the secondary layer were then set to be the new bottom layer to infer the next upper layer, and this process was repeated until a ML-hGRN with the expected layers was obtained. CONCLUSIONS: BWERF improved the accuracy for constructing ML-hGRNs because it used backward elimination to exclude the noise genes, and aggregated the individual importance values for determining the TFs retention. We validated the BWERF by using it for constructing ML-hGRNs operating above mouse pluripotency maintenance pathway and Arabidopsis lignocellulosic pathway. Compared to GENIE3, BWERF showed an improvement in recognizing authentic TFs regulating a pathway. Compared to the bottom-up Gaussian graphical model algorithm we developed for constructing ML-hGRNs, the BWERF can construct ML-hGRNs with significantly reduced edges that enable biologists to choose the implicit edges for experimental validation.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Redes e Vias Metabólicas/genética , Modelos Genéticos , Animais , Arabidopsis/genética , Camundongos
12.
Plant J ; 89(4): 692-705, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27813246

RESUMO

Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) gene with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.


Assuntos
Secas , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Biomassa , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/genética , Populus/genética
13.
Plant Signal Behav ; 11(8): e1214792, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27449227

RESUMO

Deployment of the root system is highly sensitive to the levels and spatial distribution of nutrients like nitrogen. However, the genetic determinants of these sensing and deployment mechanisms are still poorly understood. Previously, using system approaches based on temporal changes in root transcriptome in relation to low nitrogen (LN), we have been able to identify a module that activates root production in poplar in response to LN conditions. Here, using comparative, gene ontology and expression analyses, we provide further evidence that the genes in this module are indeed involved in regulation of root development under LN. Better understanding of these modules will enable approaches for breeding for better nitrogen use efficiency through development of a more sensitive and plastic root system.


Assuntos
Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Populus/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Transcriptoma/genética
14.
Plant Signal Behav ; 11(2): e1073873, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26317150

RESUMO

Bud-break is an environmentally and economically important trait in trees, shrubs and vines from temperate latitudes. Poor synchronization of bud-break timing with local climates can lead to frost injuries, susceptibility to pests and pathogens and poor crop yields in fruit trees and vines. The rapid climate changes outpace the adaptive capacities of plants to respond through natural selection. This is particularly true for trees which have long generation cycle and thus the adaptive changes are significantly delayed. Therefore, to devise appropriate breeding and conservation strategies, it is imperative to understand the molecular underpinnings that govern dormancy mechanisms. We have recently identified and characterized the poplar EARLY BUD-BREAK 1 (EBB1) gene. EBB1 is a positive regulator of bud-break and encodes a transcription factor from the AP2/ERF family. Here, using comparative and functional genomics approaches we show that EBB1 function in regulation of bud-break is likely conserved across wide range of woody perennial species with importance to forestry and agriculture.


Assuntos
Dormência de Plantas/genética , Proteínas de Plantas/fisiologia , Populus/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Adaptação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Estações do Ano , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Plant J ; 84(2): 335-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26315649

RESUMO

In Populus, low nitrogen (LN) elicits rapid and vigorous lateral root (LR) proliferation, which is closely mirrored by corresponding transcriptomic changes. Using transcriptomic data, we built a genetic network encompassing a large proportion of the differentially regulated transcriptome. The network is organized in a hierarchical fashion, centered on 11 genes. Transgenic manipulations of only three of the 11 genes had a strong impact on root development under LN. These three genes encoded an F-box protein similar to Hawaiian Skirt (PtaHWS) and two transcription factors (PtaRAP2.11 and PtaNAC1). Up- and downregulation of the three genes caused increased and decreased root proliferation under LN conditions, respectively. The transgenic manipulations had a strong positive effect on growth under greenhouse conditions including increased shoot and root biomass. The three genes appeared to encompass a putative yet-unknown mechanism that underlies root development under LN. Specifically, the genes are predominantly expressed in roots and have a similar temporal response to LN. More importantly, transgenic manipulation for each of the three genes had a highly significant impact on the expression of the other two. The transgenic manipulations appear to also affect the expression of the regulatory miRNA (PtamiRNA164e) of one of the transcription factors (PtaNAC1), albeit in an opposite fashion. Consistent with a putative function of PtaHWS in proteasome degradation, treatment with proteasome inhibitor reversed the expression changes in the transgenic plants. The insights from this study will allow genetic modifications of root architecture for more efficient and dynamic nitrogen foraging in biofuel crops like poplar.


Assuntos
Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Populus/metabolismo , Biologia de Sistemas/métodos , Regulação da Expressão Gênica de Plantas
16.
Proc Natl Acad Sci U S A ; 111(27): 10001-6, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24951507

RESUMO

Trees from temperate latitudes transition between growth and dormancy to survive dehydration and freezing stress during winter months. We used activation tagging to isolate a dominant mutation affecting release from dormancy and identified the corresponding gene EARLY BUD-BREAK 1 (EBB1). We demonstrate through positioning of the tag, expression analysis, and retransformation experiments that EBB1 encodes a putative APETALA2/Ethylene responsive factor transcription factor. Transgenic up-regulation of the gene caused early bud-flush, whereas down-regulation delayed bud-break. Native EBB1 expression was highest in actively growing apices, undetectable during the dormancy period, but rapidly increased before bud-break. The EBB1 transcript was localized in the L1/L2 layers of the shoot meristem and leaf primordia. EBB1-overexpressing transgenic plants displayed enlarged shoot meristems, open and poorly differentiated buds, and a higher rate of cell division in the apex. Transcriptome analyses of the EBB1 transgenics identified 971 differentially expressed genes whose expression correlated with the EBB1 expression changes in the transgenic plants. Promoter analysis among the differentially expressed genes for the presence of a canonical EBB1-binding site identified 65 putative target genes, indicative of a broad regulatory context of EBB1 function. Our results suggest that EBB1 has a major and integrative role in reactivation of meristem activity after winter dormancy.


Assuntos
Proteínas de Plantas/fisiologia , Populus/fisiologia , Estações do Ano , Genes de Plantas , Mutação , Plantas Geneticamente Modificadas , Populus/genética , RNA Mensageiro/genética
17.
PLoS One ; 9(1): e86217, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465967

RESUMO

Survival and productivity of perennial plants in temperate zones are dependent on robust responses to prolonged and seasonal cycles of unfavorable conditions. Here we report whole-genome microarray, expression, physiological, and transgenic evidence in hybrid poplar (Populus tremula × Populus alba) showing that gibberellin (GA) catabolism and repressive signaling mediates shoot growth inhibition and physiological adaptation in response to drought and short-day (SD) induced bud dormancy. Both water deprivation and SDs elicited activation of a suite of poplar GA2ox and DELLA encoding genes. Poplar transgenics with up-regulated GA 2-oxidase (GA2ox) and DELLA domain proteins showed hypersensitive growth inhibition in response to both drought and SDs. In addition, the transgenic plants displayed greater drought resistance as evidenced by increased pigment concentrations (chlorophyll and carotenoid) and reductions in electrolyte leakage (EL). Comparative transcriptome analysis using whole-genome microarray showed that the GA-deficiency and GA-insensitivity, SD-induced dormancy, and drought response in poplar share a common regulon of 684 differentially-expressed genes, which suggest GA metabolism and signaling plays a role in plant physiological adaptations in response to alterations in environmental factors. Our results demonstrate that GA catabolism and repressive signaling represents a major route for control of growth and physiological adaptation in response to immediate or imminent adverse conditions.


Assuntos
Giberelinas/metabolismo , Populus/fisiologia , Transdução de Sinais , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fotoperíodo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Populus/genética , Populus/crescimento & desenvolvimento , Árvores/genética , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
18.
Plant Signal Behav ; 8(11): e27211, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24300216

RESUMO

Perception of environmental cues and adaptation to changing environmental conditions are crucial for survival of sessile organisms like plants. This is even more important for woody perennial species like trees that can occupy a site for thousands of years. We have previously shown that under low nitrogen (LN), poplar trees display a vigorous and long-lasting root growth associated with global transcriptomic reprogramming and an activation of hierarchical genetic networks. Here we use computational analysis to better understand the network among the genes showing distinct chronological patterns of expression during the response. Our analyses confirm the previous findings, define new potential signaling pathways and the possible downstream targets of these signaling events.


Assuntos
Redes Reguladoras de Genes , Nitrogênio/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Populus/efeitos dos fármacos , Populus/genética , Raízes de Plantas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
19.
New Phytol ; 200(2): 483-497, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23795675

RESUMO

We show a distinct and previously poorly characterized response of poplar (Populus tremula × Populus alba) roots to low nitrogen (LN), which involves activation of root growth and significant transcriptome reprogramming. Analysis of the temporal patterns of enriched ontologies among the differentially expressed genes revealed an ordered assembly of functionally cohesive biological events that aligned well with growth and morphological responses. A core set of 28 biological processes was significantly enriched across the whole studied period and 21 of these were also enriched in the roots of Arabidopsis thaliana during the LN response. More than half (15) of the 28 processes belong to gene ontology (GO) terms associated with signaling and signal transduction pathways, suggesting the presence of conserved signaling mechanisms triggered by LN. A reconstruction of genetic regulatory network analysis revealed a sub-network centered on a PtaNAC1 (P. tremula × alba NAM, ATAF, CUC 1) transcription factor. PtaNAC1 root-specific up-regulation increased root biomass and significantly changed the expression of the connected hub genes specifically under LN. Our results provide evidence that the root response to LN involves hierarchically structured genetic networks centered on key regulatory factors. Targeting these factors via genetic engineering or breeding approaches can allow dynamic adjustment of root architecture in response to variable nitrogen availabilities in the soil.


Assuntos
Regulação da Expressão Gênica de Plantas , Nitrogênio/deficiência , Populus/genética , Transcriptoma , Sequência de Bases , Biomassa , Regulação para Baixo , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Raízes de Plantas , Populus/crescimento & desenvolvimento , Populus/fisiologia , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Transdução de Sinais , Estresse Fisiológico , Regulação para Cima
20.
Planta ; 238(2): 271-82, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23645259

RESUMO

Using activation tagging in Populus, we have identified five mutant lines showing changes in their adventitious rooting. Among the affected lines, three showed increased and two decreased adventitious rooting. We have positioned the tag in the mutant lines via recovering genomic sequences flanking the left-hand border of the activation tagging vector and validated the transcriptional activation of the proximal genes. We further characterized one line in which the cause of the observed rooting phenotype was up-regulation of a gene encoding a transcription factor of the AP2/ERF family of unknown function (PtaERF003). We show, through retransformation, that this gene has a positive effect on both adventitious and lateral root proliferation. Comparative expression analyses show that the phenotype does not result from ectopic expression but rather up-regulation of the native expression pattern of the gene. PtaERF003 function is linked to auxin signal transduction pathway, as suggested by the rapid induction and accentuated phenotypes of the transgenic plants in presence of the hormone. Upregulation of PtaERF003 led to most significant metabolic changes in the shoot suggesting of a broader regulatory role of the gene that is not restricted to root growth and development. Our study shows that dominant tagging approaches in poplar can successfully identify novel molecular factors controlling adventitious and lateral root formation in woody plants. Such discoveries can lead to technologies that can increase root proliferation and, thus, have significant economic and environmental benefits.


Assuntos
Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Populus/genética , Fator de Transcrição AP-2/genética , Etilenos/farmacologia , Genes Dominantes , Genótipo , Ácidos Indolacéticos/farmacologia , Mutação , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/efeitos dos fármacos , Populus/crescimento & desenvolvimento , Populus/metabolismo , Análise de Sequência de DNA , Fator de Transcrição AP-2/metabolismo , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...