Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 818: 151730, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800458

RESUMO

Medium-sized rivers, which are used for intensive agriculture and urban infrastructure, are subject to manifold hydrochemical stressors. Identifying and monitoring these stressors is important for river basin management and a functioning ecosystem. To understand the spatiotemporal variation of surface water quality in a highly modified lowland river, the Münstersche Aa River (Northwestern Germany) with 62% of land used for agriculture and 26% urban/residential area, was exemplarily studied. A total of 519 samples were collected using two automated high-frequency samplers and five catchment-wide sampling campaigns. They covered the five-year period 2015-2020 and included two extremely dry summers. The Münstersche Aa catchment is dominated by low permeable strata resulting in surface water runoff (Baseflow Index: 0.41) which leads to a high amplitude of discharge variation (mean discharge: 0.7 m3/s) with high flow conditions in winter/spring, and low discharge during summer/fall. In wintertime, maximum nitrate concentrations (up to 73 mg NO3/L) and loads (up to 1300 t NO3/a; up to 98% in winter) correlate with high-flow conditions. δ18O and δ15N isotopic analysis indicated manure from farmland as the major source of nitrate whereas the impact of municipal wastewater treatment plants was neglectable. Increased nitrate concentrations are linked to the higher proportion of farmland in the upper catchment (77%) compared with the lower catchment (47%). In summertime, at extremely low flow conditions, surface water consisted of up to 100% of treated wastewater, resulting in the highest measured chloride, sodium and potassium concentrations. The river is impacted by strongly seasonal and different stressors, which can be expected to intensify with ongoing climate change. Results from this study may help to adapt monitoring schemes for the Münstersche Aa but also for other lowland streams with comparable land-use targeting the goals of the Water Framework Directive.


Assuntos
Rios , Poluentes Químicos da Água , Agricultura , Ecossistema , Monitoramento Ambiental/métodos , Rios/química , Estações do Ano , Poluentes Químicos da Água/análise , Qualidade da Água
2.
Environ Sci Technol ; 52(17): 9964-9971, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29966411

RESUMO

Chlorine dioxide (ClO2) has been used as a disinfectant in water treatment for a long time, and its use for micropollutant abatement in wastewater has recently been suggested. Surprisingly, a mechanistic understanding of ClO2 reactions in (waste)water matrices is largely lacking. The present study contributes to this mechanistic understanding by performing a detailed investigation of ClO2 reactions with organic matter using phenol as a surrogate for reactive phenolic moieties. A concept for indirectly determining HOCl using 2- and 4-bromophenol was developed. The reaction of phenol with ClO2 formed chlorite (62 ± 4% per ClO2 consumed) and hypochlorous acid (HOCl) (42 ± 3% per ClO2 consumed). The addition of ClO2 to wastewater (5 × 10-5 M ClO2) resulted in 40% atenolol and 47% metoprolol transformation. The presence of the selective HOCl scavenger glycine largely diminished their transformation, indicating that atenolol and metoprolol were transformed by a fast reaction with HOCl (e.g., k (atenolol + HOCl) = 3.5 × 104 M-1 s-1) that formed in ClO2 reactions with the wastewater matrix. The formation of HOCl may thus increase the number of transformable micropollutants in ClO2 applications. However, chlorine related byproducts may also be formed.


Assuntos
Compostos Clorados , Poluentes Ambientais , Cloro , Ácido Hipocloroso , Oxidantes , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...