Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(10): 10K112, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399711

RESUMO

Impurity confinement in fusion plasmas is mainly determined by transport mechanisms in the core region. For the Wendelstein 7-X stellarator, its island divertor is expected to screen effectively external impurity sources in the scrape-off layer at higher densities. However, the unique feature of Tracer-Encapsulated Solid Pellet (TESPEL) injection, releasing impurities at a well-localized radial position directly in the core plasma, enables investigating such transport mechanisms. This paper reports on the detailed design of a completely new TESPEL injection system, which has been designed by the National Institute for Fusion Science, Toki, Japan, and is currently being installed at Max-Planck-Institut für Plasmaphysik, Greifswald, Germany, for the Wendelstein 7-X. This injector consists of a storage and injection unit, attached to a system of guiding tubes which run through 3 successive differential pumping stages. A light-gate system and an optical observation system are used to determine the location of the deposited tracers. Laboratory tests carried out by shooting TESPELs onto a sample foil showed good performance after careful realignment of the guiding tubes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...