Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(17): 11270-11283, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629732

RESUMO

Teeth exemplify architectures comprising an interplay of inorganic and organic constituents, resulting in sophisticated natural composites. Rodents (Rodentia) showcase extraordinary adaptations, with their continuously growing incisors surpassing human teeth in functional and structural optimizations. In this study, employing state-of-the-art direct atomic-scale imaging and nanoscale spectroscopies, we present compelling evidence that the release of material from ameloblasts and the subsequent formation of iron-rich enamel and surface layers in the constantly growing incisors of rodents are complex orchestrated processes, intricately regulated and independent of environmental factors. The synergistic fusion of three-dimensional tomography and imaging techniques of etched rodent́s enamel unveils a direct correlation between the presence of pockets infused with ferrihydrite-like material and the acid resistant properties exhibited by the iron-rich enamel, fortifying it as an efficient protective shield. Moreover, observations using optical microscopy shed light on the role of iron-rich enamel as a microstructural element that acts as a path for color transmission, although the native color remains indistinguishable from that of regular enamel, challenging the prevailing paradigms. The redefinition of "pigmented enamel" to encompass ferrihydrite-like infusion in rodent incisors reshapes our perception of incisor microstructure and color generation. The functional significance of acid-resistant iron-rich enamel and the understanding of the underlying coloration mechanism in rodent incisors have far-reaching implications for human health, development of potentially groundbreaking dental materials, and restorative dentistry. These findings enable the creation of an entirely different class of dental biomaterials with enhanced properties, inspired by the ingenious designs found in nature.


Assuntos
Esmalte Dentário , Animais , Esmalte Dentário/química , Esmalte Dentário/metabolismo , Esmalte Dentário/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Ratos , Cor , Camundongos , Incisivo/química , Incisivo/metabolismo , Dente/química , Dente/metabolismo
2.
Micron ; 112: 26-34, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29906781

RESUMO

Terrestrial isopods possess large sensory setae on their walking legs. Increased fracture resistance of these elongated structures is of crucial importance, making the exoskeleton forming the setae an interesting durable material that may inspire biomimetic designs. We studied the cuticle of the sensory setae with analytical electron microscopy in order to gain detailed insights into its structure and composition at the nanometer scale and identify features that increase the fracture resistance of these minute skeletal elements. The setae are stiff structures formed by mineralized cuticle that are connected to the leg exoskeleton by a non-mineralized joint membrane. Our results demonstrate that different layers of the setal cuticle display contrasting organizations of the chitin-protein fibers and mineral particles. While in the externally positioned exocuticle organic fibers shift their orientation helicoidally in sequential layers, the fibers are aligned axially in the internally positioned endocuticle. In the setal cuticle, layers of structurally anisotropic cuticle likely providing strength in the axial direction are combined with layers of isotropic cuticle which may allow the setae to better resist perpendicular loading. They are further strengthened with amorphous calcium phosphate, a highly fracture resistant mineral rarely observed in invertebrate skeletons.

3.
ACS Nano ; 11(1): 239-248, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27936567

RESUMO

Teeth are an excellent example where optimally designed nanoarchitectures with precisely constructed components consist of simple compounds. Typically, these simple constituent phases with insignificant properties show mechanical property amplifications when formed into composite architectures. Material properties of functional composites are generally regulated on the nanoscale, which makes their characterization particularly demanding. Using advanced analytical and imaging transmission electron microscopy techniques, we identified innovative microstructural adjustments combined with astonishing compositional adaptations in incisors of coypu. Unique constituents, recognized as an additional amorphous Fe-rich surface layer followed by a transition zone covering pigmented enamel, provide the required structural stability to withstand repeated mechanical load. The chemically diverse Fe-rich surface layer, including ferrihydrite and iron-calcium phosphates, gives the typical orange-brown coloration to the incisors. Within the spaces between elongated hydroxyapatite crystals in the pigmented enamel, only ferrihydrite was found, implying that enamel pigmentation is a very strictly controlled process. Most significantly, an unprecedentedly high amount of Mg was measured in the amorphous flake-like material within the dentinal tubules of the incisors, suggesting the presence of a (Mg,Ca) phosphate phase. This unusually high influx of Mg into the dentin of incisors, but not molars, suggests a substantial functionality of Mg in the initial formation stages and constant growth of incisors. The present results emphasize the strong mutual correlation among the microstructure, chemical composition, and mechanical properties of mineralized dental tissues.

4.
J Struct Biol ; 195(2): 227-237, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27320700

RESUMO

Skeletal elements that are exposed to heavy mechanical loads may provide important insights into the evolutionary solutions to mechanical challenges. We analyzed the microscopic architecture of dactylus claws in the woodlice Porcellio scaber and correlated these observations with analyses of the claws' mineral composition with energy dispersive X-ray spectrometry (EDX), electron energy loss spectroscopy (EELS) and selected area electron diffraction (SAED). Extraordinarily, amorphous calcium phosphate is the predominant mineral in the claw endocuticle. Unlike the strongly calcified exocuticle of the dactylus base, the claw exocuticle is devoid of mineral and is highly brominated. The architecture of the dactylus claw cuticle is drastically different from that of other parts of the exoskeleton. In contrast to the quasi-isotropic structure with chitin-protein fibers oriented in multiple directions, characteristic of the arthropod exoskeleton, the chitin-protein fibers and mineral components in the endocuticle of P. scaber claws are exclusively axially oriented. Taken together, these characteristics suggest that the claw cuticle is highly structurally anisotropic and fracture resistant and can be explained as adaptations to predominant axial loading of the thin, elongated claws. The nanoscale architecture of the isopod claw may inspire technological solutions in the design of durable machine elements subjected to heavy loading and wear.


Assuntos
Calcificação Fisiológica , Fosfatos de Cálcio/química , Quitina/química , Casco e Garras/química , Minerais/química , Animais , Carbonato de Cálcio/química , Crustáceos/química , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Análise Espectral Raman
5.
Microsc Microanal ; 18(3): 509-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22494533

RESUMO

Mineralized dental tissues and dental pulp were characterized using advanced analytical transmission electron microscopy (TEM) methods. Quantitative X-ray energy dispersive spectroscopy was employed to determine the Ca/P and Mg/P concentration ratios. Significantly lower Ca/P concentration ratios were measured in peritubular dentine compared to intertubular dentine, which is accompanied by higher and variable Mg/P concentration ratios. There is strong evidence that magnesium is partially substituting calcium in the hydroxyapatite structure. Electron energy-loss near-edge structures (ELNES) of C-K and O-K from enamel and dentine are noticeably different. We observe a strong influence of beam damage on mineralized dental tissues and dental pulp, causing changes of the composition and consequently also differences in the ELNES. In this article, the importance of TEM sample preparation and specimen damage through electron irradiation is demonstrated.


Assuntos
Dente/química , Dente/ultraestrutura , Fosfatos de Cálcio/análise , Durapatita/análise , Humanos , Compostos de Magnésio/análise , Microscopia Eletrônica de Transmissão , Fosfatos/análise , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...