Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1352387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419729

RESUMO

Mild traumatic brain injury (mTBI) may be caused by occupational hazards military personnel encounter, such as falls, shocks, exposure to blast overpressure events, and recoil from weapon firing. While it is important to protect against injurious head impacts, the repeated exposure of Canadian Armed Forces (CAF) service members to sub-concussive events during the course of their service may lead to a significant reduction in quality of life. Symptoms may include headaches, difficulty concentrating, and noise sensitivity, impacting how personnel complete their duties and causing chronic health issues. This study investigates how the exposure to the recoil force of long-range rifles results in head motion and brain deformation. Direct measurements of head kinematics of a controlled population of military personnel during firing events were obtained using instrumented mouthguards. The experimentally measured head kinematics were then used as inputs to a finite element (FE) head model to quantify the brain strains observed during each firing event. The efficacy of a concept recoil mitigation system (RMS), designed to mitigate loads applied to the operators was quantified, and the RMS resulted in lower loading to the operators. The outcomes of this study provide valuable insights into the magnitudes of head kinematics observed when firing long-range rifles, and a methodology to quantify effects, which in turn will help craft exposure guidelines, guide training to mitigate the risk of injury, and improve the quality of lives of current and future CAF service members and veterans.

2.
Ann Biomed Eng ; 52(4): 908-919, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218736

RESUMO

Finite element head models offer great potential to study brain-related injuries; however, at present may be limited by geometric and material property simplifications required for continuum-level human body models. Specifically, the mechanical properties of the brain tissues are often represented with simplified linear viscoelastic models, or the material properties have been optimized to specific impact cases. In addition, anatomical structures such as the arachnoid complex have been omitted or implemented in a simple lumped manner. Recent material test data for four brain regions at three strain rates in three modes of loading (tension, compression, and shear) was used to fit material parameters for a hyper-viscoelastic constitutive model. The material model was implemented in a contemporary detailed head finite element model. A detailed representation of the arachnoid trabeculae was implemented with mechanical properties based on experimental data. The enhanced head model was assessed by re-creating 11 ex vivo head impact scenarios and comparing the simulation results with experimental data. The hyper-viscoelastic model faithfully captured mechanical properties of the brain tissue in three modes of loading and multiple strain rates. The enhanced head model showed a high level of biofidelity in all re-created impacts in part due to the improved brain-skull interface associated with implementation of the arachnoid trabeculae. The enhanced head model provides an improved predictive capability with material properties based on tissue level data and is positioned to investigate head injury and tissue damage in the future.


Assuntos
Lesões Encefálicas , Encéfalo , Humanos , Análise de Elementos Finitos , Estresse Mecânico , Cabeça , Aracnoide-Máter/fisiologia , Fenômenos Biomecânicos
3.
J Biomech Eng ; 146(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646646

RESUMO

Behind armor blunt trauma (BABT), resulting from dynamic deformation of protective ballistic armor into the thorax, is currently assessed assuming a constant threshold of maximum backface deformation (BFDs) (44 mm). Although assessed for multiple impacts on the same armor, testing is focused on armor performance (shot-to-edge and shot-to-shot) without consideration of the underlying location on the thorax. Previous studies identified the importance of impacts on organs of animal surrogates wearing soft armor. However, the effect of impact location was not quantified outside the threshold of 44 mm. In the present study, a validated biofidelic advanced human thorax model (50th percentile male) was utilized to assess the BABT outcome from varying impact location. The thorax model was dynamically loaded using a method developed for recreating BABT impacts, and BABT events within the range of real-world impact severities and locations were simulated. It was found that thorax injury depended on impact location for the same BFDs. Generally, impacts over high compliance locations (anterolateral rib cage) yielded increased thoracic compression and loading on the lungs leading to pulmonary lung contusion (PLC). Impacts at low compliance locations (top of sternum) yielded hard tissue fractures. Injuries to the sternum, ribs, and lungs were predicted at BFDs lower than 44 mm for low compliance locations. Location-based injury risk curves demonstrated greater accuracy in injury prediction. This study quantifies the importance of impact location on BABT injury severity and demonstrates the need for consideration of location in future armor design and assessment.


Assuntos
Fraturas Ósseas , Ferimentos não Penetrantes , Animais , Humanos , Masculino , Balística Forense , Análise de Elementos Finitos , Corpo Humano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...