Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738602

RESUMO

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Assuntos
Proteínas de Drosophila , Morfogênese , Proteínas do Tecido Nervoso , Neurópilo , Lobo Óptico de Animais não Mamíferos , Receptores de Superfície Celular , Semaforinas , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Morfogênese/genética , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/embriologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Neurônios/metabolismo , Drosophila/metabolismo , Drosophila/embriologia , Mutação/genética
2.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609142

RESUMO

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of Semaphorin function indicates that Semaphorin 1a, provided by cells that include Tm5 neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A does not disrupt the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles. Summary statement: The axon guidance molecule Plexin A has two functions in Drosophila medulla development; morphogenesis of the neuropil requires its cytoplasmic domain, but establishing synaptic layers through Semaphorin 1a does not.

3.
J Cell Biol ; 217(10): 3715-3730, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30006462

RESUMO

The reorganization of cells in response to mechanical forces converts simple epithelial sheets into complex tissues of various shapes and dimensions. Epithelial integrity is maintained throughout tissue remodeling, but the mechanisms that regulate dynamic changes in cell adhesion under tension are not well understood. In Drosophila melanogaster, planar polarized actomyosin forces direct spatially organized cell rearrangements that elongate the body axis. We show that the LIM-domain protein Ajuba is recruited to adherens junctions in a tension-dependent fashion during axis elongation. Ajuba localizes to sites of myosin accumulation at adherens junctions within seconds, and the force-sensitive localization of Ajuba requires its N-terminal domain and two of its three LIM domains. We demonstrate that Ajuba stabilizes adherens junctions in regions of high tension during axis elongation, and that Ajuba activity is required to maintain cell adhesion during cell rearrangement and epithelial closure. These results demonstrate that Ajuba plays an essential role in regulating cell adhesion in response to mechanical forces generated by epithelial morphogenesis.


Assuntos
Junções Aderentes/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas com Domínio LIM/metabolismo , Morfogênese/fisiologia , Actomiosina/genética , Actomiosina/metabolismo , Junções Aderentes/genética , Animais , Adesão Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Epitélio/embriologia , Proteínas com Domínio LIM/genética , Domínios Proteicos
4.
Biochim Biophys Acta ; 1838(9): 2228-2233, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24747525

RESUMO

Antimicrobial peptides continue to garner attention as potential alternatives to conventional antibiotics. Hipposin is a histone-derived antimicrobial peptide (HDAP) previously isolated from Atlantic halibut. Though potent against bacteria, its antibacterial mechanism had not been characterized. The mechanism of this peptide is particularly interesting to consider since the full hipposin sequence contains the sequences of parasin and buforin II (BF2), two other known antimicrobial peptides that act via different antibacterial mechanisms. While parasin kills bacteria by inducing membrane permeabilization, buforin II enters cells without causing significant membrane disruption, harming bacteria through interactions with intracellular nucleic acids. In this study, we used a modular approach to characterize hipposin and determine the role of the parasin and buforin II fragments in the overall hipposin mechanism. Our results show that hipposin kills bacteria by inducing membrane permeabilization, and this membrane permeabilization is promoted by the presence of the N-terminal domain. Portions of hipposin lacking the N-terminal sequence do not cause membrane permeabilization and function more similarly to buforin II. We also determined that the C-terminal portion of hipposin, HipC, is a cell-penetrating peptide that readily enters bacterial cells but has no measurable antimicrobial activity. HipC is the first membrane active histone fragment identified that does not kill bacterial or eukaryotic cells. Together, these results characterize hipposin and provide a useful starting point for considering the activity of chimeric peptides made by combining peptides with different antimicrobial mechanisms. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Peixes/química , Proteínas/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Dicroísmo Circular , Proteínas de Peixes/farmacologia , Histonas/química , Testes de Sensibilidade Microbiana , Proteínas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...