Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38730861

RESUMO

Because of the high demand for carbon fiber reinforced polymer (CFRP) materials across all industries, the reuse and/or recycling of these materials (rCFRP) is necessary in order to meet the principles of the circular economy, including recycling and reuse. The objective of this study is to estimate the lifespan of thermoplastic matrix composite materials reinforced with waste materials (CFRP), which undergo only a mechanical cutting process. This estimation is carried out through the thermal decomposition of polymers, including polymer matrix composite materials, which is a complex process due to the numerous reactions involved. Some authors calculate these kinetic parameters using thermogravimetric analysis (TGA) as it is a quick method, and it allows the identification of gases released during decomposition, provided that the equipment is prepared for it. This study includes a comparison between polyamides 11 and 12, as well as between polyamide composite materials with carbon fiber (CF) and polyamides reinforced with CF/epoxy composite material. The latter is treated with plasma to improve adhesion with polyamides. The behavior of weight as a function of temperature was studied at speeds of 3, 6, 10, 13, 17, and 20 °C/min, finding stability of the polyamides up to a temperature of 400 °C, which was consistent with the analysis by mass spectroscopy, where gas evolution is evident after 400 °C. The estimation of the lifespan was carried out using two different methods including the Toop equation and the free kinetics model (MFK). The energy of the decomposition process was determined using the MFK model, which establishes the energy as a function of the degree of conversion. It is estimated that at 5% decomposition, mechanical properties are lost.

2.
Polymers (Basel) ; 15(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38139872

RESUMO

Hybridizing carbon-fiber-reinforced polymers with natural fibers could be a solution to prevent delamination and improve the out-of-plane properties of laminated composites. Delamination is one of the initial damage modes in composite laminates, attributed to relatively poor interlaminar mechanical properties, e.g., low interlaminar strength and fracture toughness. This study examined the interlaminar bond strength, flexural properties, and hardness of carbon/flax/polyamide hybrid bio-composites using peel adhesion, three-point bending, and macro-hardness tests, respectively. In this regard, interlayer hybrid laminates were produced with a sandwich fiber hybrid mode, using woven carbon fiber plies (C) as the outer layers and woven flax fiber plies (F) as the inner ones (CFFC) in combination with a bio-based thermoplastic polyamide 11 matrix. In addition, non-hybrid carbon and flax fiber composites with the same matrix were produced as reference laminates to investigate the hybridization effects. The results revealed the advantages of hybridization in terms of flexural properties, including a 212% higher modulus and a 265% higher strength compared to pure flax composites and a 34% higher failure strain compared to pure carbon composites. Additionally, the hybrid composites exhibited a positive hybridization effect in terms of peeling strength, demonstrating a 27% improvement compared to the pure carbon composites. These results provide valuable insights into the mechanical performance of woven carbon-flax hybrid bio-composites, suggesting potential applications in the automotive and construction industries.

3.
Polymers (Basel) ; 15(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631503

RESUMO

Carbon fiber-reinforced polymer (CFRP) composite materials are widely used in engineering applications, but their production generates a significant amount of waste. This paper aims to explore the potential of incorporating mechanically recycled aerospace prepreg waste in thermoplastic composite materials to reduce the environmental impact of composite material production and promote the use of recycled materials. The composite material developed in this study incorporates a bio-based thermoplastic polymer, polyamide 11 (PA11), as the matrix material and recycled aerospace prepreg waste quasi-one-dimensionally arranged as reinforcement. Mechanical, thermal, and thermomechanical characterizations were performed through tensile, flexural, and impact tests, as well as differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Compared to previous studies that used a different recycled CFRP in the shape of rods, the results show that the recycled prepregs are a suitable reinforcement, enhancing the reinforcement-matrix adhesion and leading to higher mechanical properties. The tensile results were evaluated by SEM, and the impact tests were evaluated by CT scans. The results demonstrate the potential of incorporating recycled aerospace prepreg waste in thermoplastic composite materials to produce high-performance and sustainable components in the aerospace and automotive industries.

4.
Polymers (Basel) ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235899

RESUMO

The increasing use of carbon fiber and epoxy resin composite materials yields an increase in the amount of waste. Therefore, we present a solution consisting of composites manufactured by hot pressing, employing polyamides (either PA11 or PA12) and a mechanically recycled carbon fiber-reinforced polymer (CFRP) as reinforcement. The main objectives are to study the manufacturing of those composites, to evaluate the fiber distribution, and to perform a mechanical, dynamical, and thermomechanical characterizations. The X-ray micro-computed tomography (µCT) shows that the fibers are well-distributed, maintaining a homogeneous fiber volume fraction across the material. The variability in the results is typical of discontinuous fiber composites in which the fibers, although oriented, are not as homogeneously distributed as in a continuous fiber composite. The mechanical and dynamic properties barely differ between the two sets of composites. A dynamic-mechanical analysis revealed that the glass transition temperature (Tg) increases slightly for both composites, compared to the polymers. These results illustrate the viability of the recycling and reuse route for preventing the deterioration of carbon fibers and promoting the subsequent reduction in the environmental impact by employing a thermoplastic matrix.

5.
Materials (Basel) ; 14(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771926

RESUMO

The rapid increase in the application of carbon fiber reinforced polymer (CFRP) composite materials represents a challenge to waste recycling. The circular economy approach coupled with the possibility of recovering carbon fibers from CFRP waste with similar properties to virgin carbon fibers at a much lower cost and with lower energy consumption motivate the study of CFRP recycling. Mechanical recycling methods allow the obtention of chopped composite materials, while both thermal and chemical recycling methods aim towards recovering carbon fibers. This review examines the three main recycling methods, their processes, and particularities, as well as the reuse of recycled carbon fibers in the manufacture of new composite materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...