Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 116(24): 5972-80, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22329640

RESUMO

The branching ratio ß = k(1b)/k(1a) for the formation of methyl nitrate, CH(3)ONO(2), in the gas-phase CH(3)O(2) + NO reaction, CH(3)O(2) + NO → CH(3)O + NO(2) (1a), CH(3)O(2) + NO → CH(3)ONO(2) (1b), has been determined over the pressure and temperature ranges 50-500 Torr and 223-300 K, respectively, using a turbulent flow reactor coupled with a chemical ionization mass spectrometer. At 298 K, the CH(3)ONO(2) yield has been found to increase linearly with pressure from 0.33 ± 0.16% at 50 Torr to 0.80 ± 0.54% at 500 Torr (errors are 2σ). Decrease of temperature from 300 to 220 K leads to an increase of ß by a factor of about 3 in the 100-200 Torr range. These data correspond to a value of ß ≈ 1.0 ± 0.7% over the pressure and temperature ranges of the whole troposphere. Atmospheric concentrations of CH(3)ONO(2) roughly estimated using results of this work are in reasonable agreement with those observed in polluted environments and significantly higher compared with measurements in upper troposphere and lower stratosphere.


Assuntos
Nitratos/síntese química , Óxido Nítrico/química , Peróxidos/química , Temperatura , Nitratos/química , Pressão
2.
J Phys Chem A ; 115(12): 2498-508, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21366303

RESUMO

The branching ratios for the reactions of attachment of hydroxyl radical to propene and hydrogen-atom abstraction were measured at 298 K over the buffer gas pressure range 60-400 Torr (N(2)) using a subatmospheric pressure turbulent flow reactor coupled with a chemical ionization quadrupole mass spectrometer. Isotopically enriched water H(2)(18)O was used to produce (18)O-labeled hydroxyl radicals in reaction with fluorine atoms. The ß-hydroxypropyl radicals formed in the attachment reactions 1a and 1b , OH + C(3)H(6) → CH(2)(OH)C(•)HCH(3) (eq 1a ) and OH + C(3)H(6) → C(•)H(2)CH(OH)CH(3) (eq 1b ), were converted to formaldehyde and acetaldehyde in a sequence of secondary reactions in O(2)- and NO-containing environment. The (18)O-labeling propagates to the final products, allowing determination of the branching ratio for the attachment channels of reaction 1. The measured branching ratio for attachment is ß(1b) = k(1b)/(k(1a) + k(1b)) = 0.51 ± 0.03, independent of pressure over the 60-400 Torr pressure range. An upper limit on the hydrogen-abstraction channel, OH + C(3)H(6) → H(2)O + C(3)H(5) (eq 1c ), was determined by measuring the water yield in reactions of OH and OD radicals (produced via H(D) + NO(2) → OH(OD) + NO reactions) with C(3)H(6) as k(1c)/(k(1a) + k(1b) + k(1c)) < 0.05 (at 298 K, 200 Torr N(2)).

3.
J Phys Chem A ; 114(2): 956-64, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20025255

RESUMO

The branching ratio beta = k(1b)/k(1a) for the formation of ethyl nitrate, C(2)H(5)ONO(2), in the gas-phase C(2)H(5)O(2) + NO reaction, C(2)H(5)O(2) + NO --> C(2)H(5)O + NO(2) (1a), C(2)H(5)O(2) + NO --> C(2)H(5)ONO(2) (1b), was determined over the pressure and temperature ranges 100-600 Torr and 223-298 K, respectively, using a turbulent flow reactor coupled with a chemical ionization mass spectrometer. At 298 K the C(2)H(5)ONO(2) yield was found to increase linearly with pressure from about 0.7% at 100 Torr to about 3% at 600 Torr. At each pressure, the branching ratio of C(2)H(5)ONO(2) formation increases with the decrease of temperature. The following parametrization equation has been derived in the pressure and temperature ranges of the study: beta(P,T) (%) = (3.88 x 10(-3).P (Torr) + 0.365).(1 + 1500(1/T - 1/298)). The atmospheric implication of the results obtained is briefly discussed, in particular the impact of beta on the evolution of ethyl nitrate in urban plumes.

4.
J Phys Chem A ; 113(42): 11327-42, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19780600

RESUMO

The influence of water vapor on the production of nitric acid in the gas-phase HO(2) + NO reaction was determined at 298 K and 200 Torr using a high-pressure turbulent flow reactor coupled with a chemical ionization mass spectrometer. The yield of HNO(3) was found to increase linearly with the increase of water concentration reaching an enhancement factor of about 8 at [H(2)O] = 4 x 10(17) molecules cm(-3) ( approximately 50% relative humidity). A rate constant value k(1bw) = 6 x 10(-13) cm(3) molecule(-1) s(-1) was derived for the reaction involving the HO(2)xH(2)O complex: HO(2)xH(2)O + NO --> HNO(3) (1bw), assuming that the water enhancement is due to this reaction. k(1bw) is approximately 40 times higher than the rate constant of the reaction HO(2) + NO --> HNO(3) (1b), at the same temperature and pressure. The experimental findings are corroborated by density functional theory (DFT) calculations performed on the H(2)O/HO(2)/NO system. The significance of this result for atmospheric chemistry and chemical amplifier instruments is briefly discussed. An appendix containing a detailed consideration of the possible contribution from the surface reactions in our previous studies of the title reaction and in the present one is included.

5.
J Phys Chem A ; 111(37): 9047-53, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17718462

RESUMO

A high-pressure turbulent flow reactor coupled with a chemical ionization mass-spectrometer was used to determine the branching ratio of the HO(2) + NO reaction: HO(2) + NO --> OH + NO(2) (1a), HO(2) + NO --> HNO(3) (1b). The branching ratio, beta = k(1b)/k(1a), was derived from the measurements of "chemically amplified" concentrations of the NO(2) and HNO(3) products in the presence of O(2) and CO. The pressure and temperature dependence of beta was determined in the pressure range of 72-600 Torr of N(2) carrier gas between 323 and 223 K. At each pressure, the branching ratio was found to increase with the decrease of temperature, the increase becoming less pronounced with the increase of pressure. In the 298-223 K range, the data could be fitted by the expression: beta(T,P) = (530 +/- 10)/T(K) + (6.4 +/- 1.3) x 10(-4)P(Torr) - (1.73 +/- 0.07), giving beta approximately 0.5% near the Earth's surface (298 K, 760 Torr) and 0.8% in the tropopause region (220 K, 200 Torr). The atmospheric implication of these results is briefly discussed.

6.
J Phys Chem A ; 110(50): 13492-9, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17165875

RESUMO

The mechanism of the gas-phase OH-initiated oxidation of glycolaldehyde (HOCH(2)CHO) was studied in the 233-296 K temperature range using a turbulent flow reactor coupled with a chemical ionization mass spectrometer. In the presence of O2, formaldehyde, CO2, formic acid, and glyoxal were observed at room temperature with the yields of 80, 34, 18, and 14%, respectively. Decrease of temperature to 233 K led to significant changes in the yields of the stable products: those of formaldehyde and glyoxal decreased to 50 and 4%, respectively, whereas that of formic acid increased to 52%. It was also found that the OH + glycolaldehyde + O2 reaction proceeds with considerable reformation of OH radicals (by 25% at 296 K). The observed product yields are explained by a mechanism including formation of short-lived intermediate adducts of the primary radicals with O2. The implication of the obtained results for the HOx budget in the upper troposphere is discussed.

7.
J Phys Chem A ; 110(21): 6833-43, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16722699

RESUMO

The mechanism of the gas-phase reaction of OH radicals with hydroxyacetone (CH3C(O)CH2OH) was studied at 200 Torr over the temperature range 236-298 K in a turbulent flow reactor coupled to a chemical ionization mass-spectrometer. The product yields and kinetics were measured in the presence of O2 to simulate the atmospheric conditions. The major stable product at all temperatures is methylglyoxal. However, its yield decreases from 82% at 298 K to 49% at 236 K. Conversely, the yields of formic and acetic acids increase from about 8% to about 20%. Other observed products were formaldehyde, CO2 and peroxy radicals HO2 and CH3C(O)O2. A partial re-formation of OH radicals (by approximately 10% at 298 K) was found in the OH + hydroxyacetone + O2 chemical system along with a noticeable inverse secondary kinetic isotope effect (k(OH)/k(OD) = 0.78 +/- 0.10 at 298 K). The observed product yields are explained by the increasing role of the complex formed between the primary radical CH3C(O)CHOH and O2 at low temperature. The rate constant of the reaction CH3C(O)CHOH + O2 --> CH3C(O)CHO + HO2 at 298 K, (3.0 +/- 0.6) x 10(-12) cm3 molecule(-1) s(-1), was estimated by computer simulation of the concentration-time profiles of the CH3C(O)CHO product. The detailed mechanism of the OH-initiated oxidation of hydroxyacetone can help to better describe the atmospheric oxidation of isoprene, in particular, in the upper troposphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...