Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 3(7): e123, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17658954

RESUMO

Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.


Assuntos
Evolução Molecular , Genoma de Planta , Zea mays/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Impressões Digitais de DNA , DNA de Plantas/genética , Grão Comestível/genética , Duplicação Gênica , Rearranjo Gênico , Oryza/genética , Filogenia , Especificidade da Espécie
2.
Plant Physiol ; 139(4): 1612-24, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16339807

RESUMO

Maize (Zea mays or corn) plays many varied and important roles in society. It is not only an important experimental model plant, but also a major livestock feed crop and a significant source of industrial products such as sweeteners and ethanol. In this study we report the systematic analysis of contiguous sequences of the maize genome. We selected 100 random regions averaging 144 kb in size, representing about 0.6% of the genome, and generated a high-quality dataset for sequence analysis. This sampling contains 330 annotated genes, 91% of which are supported by expressed sequence tag data from maize and other cereal species. Genes averaged 4 kb in size with five exons, although the largest was over 59 kb with 31 exons. Gene density varied over a wide range from 0.5 to 10.7 genes per 100 kb and genes did not appear to cluster significantly. The total repetitive element content we observed (66%) was slightly higher than previous whole-genome estimates (58%-63%) and consisted almost exclusively of retroelements. The vast majority of genes can be aligned to at least one sequence read derived from gene-enrichment procedures, but only about 30% are fully covered. Our results indicate that much of the increase in genome size of maize relative to rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) is attributable to an increase in number of both repetitive elements and genes.


Assuntos
Genoma de Planta , Zea mays/genética , Composição de Bases , Cromossomos Artificiais Bacterianos/genética , Códon/genética , DNA de Plantas/química , DNA de Plantas/genética , Expressão Gênica , Biblioteca Gênica , Genes de Plantas , Família Multigênica , Sequências Repetitivas de Ácido Nucleico
3.
Plant Physiol ; 139(1): 27-38, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16166258

RESUMO

Fluorescent-based high-information-content fingerprinting (HICF) techniques have recently been developed for physical mapping. These techniques make use of automated capillary DNA sequencing instruments to enable both high-resolution and high-throughput fingerprinting. In this article, we report the construction of a whole-genome HICF FPC map for maize (Zea mays subsp. mays cv B73), using a variant of HICF in which a type IIS restriction enzyme is used to generate the fluorescently labeled fragments. The HICF maize map was constructed from the same three maize bacterial artificial chromosome libraries as previously used for the whole-genome agarose FPC map, providing a unique opportunity for direct comparison of the agarose and HICF methods; as a result, it was found that HICF has substantially greater sensitivity in forming contigs. An improved assembly procedure is also described that uses automatic end-merging of contigs to reduce the effects of contamination and repetitive bands. Several new features in FPC v7.2 are presented, including shared-memory multiprocessing, which allows dramatically faster assemblies, and automatic end-merging, which permits more accurate assemblies. It is further shown that sequenced clones may be digested in silico and located accurately on the HICF assembly, despite size deviations that prevent the precise prediction of experimental fingerprints. Finally, repetitive bands are isolated, and their effect on the assembly is studied.


Assuntos
Impressões Digitais de DNA/métodos , Impressões Digitais de DNA/normas , Genoma de Planta , Zea mays/genética , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Software
4.
Plant Physiol ; 130(4): 1706-16, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12481053

RESUMO

To understand the mechanisms responsible for aluminum (Al) toxicity and tolerance in plants, an expressed sequence tag (EST) approach was used to analyze changes in gene expression in roots of rye (Secale cereale L. cv Blanco) under Al stress. Two cDNA libraries were constructed (Al stressed and unstressed), and a total of 1,194 and 774 ESTs were generated, respectively. The putative proteins encoded by these cDNAs were uncovered by Basic Local Alignment Search Tool searches, and those ESTs showing similarity to proteins of known function were classified according to 13 different functional categories. A total of 671 known function genes were used to analyze the gene expression patterns in rye cv Blanco root tips under Al stress. Many of the previously identified Al-responsive genes showed expression differences between the libraries within 6 h of Al stress. Certain genes were selected, and their expression profiles were studied during a 48-h period using northern analysis. A total of 13 novel genes involved in cell elongation and division (tonoplast aquaporin and ubiquitin-like protein SMT3), oxidative stress (glutathione peroxidase, glucose-6-phosphate-dehydrogenase, and ascorbate peroxidase), iron metabolism (iron deficiency-specific proteins IDS3a, IDS3b, and IDS1; S-adenosyl methionine synthase; and methionine synthase), and other cellular mechanisms (pathogenesis-related protein 1.2, heme oxygenase, and epoxide hydrolase) were demonstrated to be regulated by Al stress. These genes provide new insights about the response of Al-tolerant plants to toxic levels of Al.


Assuntos
Alumínio/toxicidade , Etiquetas de Sequências Expressas , Secale/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Northern Blotting , Divisão Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ferro/metabolismo , Dados de Sequência Molecular , Estresse Oxidativo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Secale/efeitos dos fármacos , Secale/fisiologia , Sideróforos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA