Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 116: 385-401, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38145855

RESUMO

Post-operative cognitive dysfunction (POCD) is an abrupt decline in neurocognitive function arising shortly after surgery and persisting for weeks to months, increasing the risk of dementia diagnosis. Advanced age, obesity, and comorbidities linked to high-fat diet (HFD) consumption such as diabetes and hypertension have been identified as risk factors for POCD, although underlying mechanisms remain unclear. We have previously shown that surgery alone, or 3-days of HFD can each evoke sufficient neuroinflammation to cause memory deficits in aged, but not young rats. The aim of the present study was to determine if HFD consumption before surgery would potentiate and prolong the subsequent neuroinflammatory response and memory deficits, and if so, to determine the extent to which these effects depend on activation of the innate immune receptor TLR4, which both insults are known to stimulate. Young-adult (3mo) & aged (24mo) male F344xBN F1 rats were fed standard chow or HFD for 3-days immediately before sham surgery or laparotomy. In aged rats, the combination of HFD and surgery caused persistent deficits in contextual memory and cued-fear memory, though it was determined that HFD alone was sufficient to cause the long-lasting cued-fear memory deficits. In young adult rats, HFD + surgery caused only cued-fear memory deficits. Elevated proinflammatory gene expression in the hippocampus of both young and aged rats that received HFD + surgery persisted for at least 3-weeks after surgery. In a separate experiment, rats were administered the TLR4-specific antagonist, LPS-RS, immediately before HFD onset, which ameliorated the HFD + surgery-associated neuroinflammation and memory deficits. Similarly, dietary DHA supplementation for 4 weeks prior to HFD onset blunted the neuroinflammatory response to surgery and prevented development of persistent memory deficits. These results suggest that HFD 1) increases risk of persistent POCD-associated memory impairments following surgery in male rats in 2) a TLR4-dependent manner, which 3) can be targeted by DHA supplementation to mitigate development of persistent POCD.


Assuntos
Disfunção Cognitiva , Complicações Cognitivas Pós-Operatórias , Ratos , Masculino , Animais , Receptor 4 Toll-Like/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças Neuroinflamatórias , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Suplementos Nutricionais , Disfunção Cognitiva/metabolismo
2.
Front Cell Neurosci ; 17: 1227241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636589

RESUMO

The consumption of diets high in saturated fatty acids and/or refined carbohydrates are associated with neuroinflammation, cognitive dysfunction, and neurodegenerative disease. In contrast, diets high in polyunsaturated fatty acids are associated with anti-inflammatory and neuroprotective effects. We have previously shown that high fat diet (HFD) consumption increases saturated fatty acids and decreases polyunsaturated fatty acids in the hippocampus. We have further shown that HFD elicits exaggerated neuroinflammation and reduced synaptic elements, and results in robust memory deficits in aged rats. Here, we examined the impact of palmitate, an abundant dietary saturated fat, on a variety of cellular responses in BV2 microglia and HippoE-14 neurons, and the extent to which the omega-3 fatty acid, docosahexaenoic acid (DHA), would buffer against these responses. Our data demonstrate that DHA pretreatment prevents or partially attenuates palmitate-induced alterations in proinflammatory, endoplasmic reticulum stress, and mitochondrial damage-associated gene expression in both cell types. Furthermore, we show that synaptoneurosomes isolated from aged, HFD-fed mice are engulfed by BV2 microglia at a faster rate than synaptoneurosomes isolated from aged, chow-fed mice, suggesting HFD alters signaling at synapses to hasten their engulfment by microglia. Consistent with this notion, we found modest increases in complement proteins and a decrease in CD47 protein expression on synaptoneurosomes isolated from the hippocampus of aged, HFD-fed mice. Interestingly, palmitate reduced BV2 microglial phagocytosis, but only of synaptoneurosomes isolated from chow-fed mice, an effect that was prevented by DHA pretreatment. Lastly, we measured the impact of palmitate and DHA on mitochondrial function in both microglial and neuronal cell models using the Seahorse XFe96 Analyzer. These data indicate that DHA pretreatment does not mitigate palmitate-induced reductions in mitochondrial respiration in BV2 microglia and HippoE-14 neurons, suggesting DHA may be acting downstream of mitochondrial function to exert its protective effects. Together, this study provides evidence that DHA can ameliorate the negative impact of palmitate on a variety of cellular functions in microglia- and neuron-like cells.

4.
Brain Res Bull ; 195: 145-156, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870621

RESUMO

Global populations are increasingly consuming diets high in saturated fats and refined carbohydrates, and such diets have been well-associated with heightened inflammation and neurological dysfunction. Notably, older individuals are particularly vulnerable to the impact of unhealthy diet on cognition, even after a single meal, and pre-clinical rodent studies have demonstrated that short-term consumption of high-fat diet (HFD) induces marked increases in neuroinflammation and cognitive impairment. Unfortunately though, to date, most studies on the topic of nutrition and cognition, especially in aging, have been performed only in male rodents. This is especially concerning given that older females are more vulnerable to develop certain memory deficits and/or severe memory-related pathologies than males. Thus, the aim of the present study was to determine the extent to which short-term HFD consumption impacts memory function and neuroinflammation in female rats. Young adult (3 months) and aged (20-22 months) female rats were fed HFD for 3 days. Using contextual fear conditioning, we found that HFD had no effect on long-term contextual memory (hippocampus-dependent) at either age, but impaired long-term auditory-cued memory (amygdala-dependent) regardless of age. Gene expression of Il-1ß was markedly dysregulated in the amygdala, but not hippocampus, of both young and aged rats after 3 days of HFD. Interestingly, modulation of IL-1 signaling via central administration of the IL-1 receptor antagonist (which we have previously demonstrated to be protective in males) had no impact on memory function following the HFD in females. Investigation of the memory-associated gene Pacap and its receptor Pac1r revealed differential effects of HFD on their expression in the hippocampus and amygdala. Specifically, HFD induced increased expression of Pacap and Pac1r in the hippocampus, whereas decreased Pacap was observed in the amygdala. Collectively, these data suggest that both young adult and aged female rats are vulnerable to amygdala-dependent (but not hippocampus-dependent) memory impairments following short-term HFD consumption, and identify potential mechanisms related to IL-1ß and PACAP signaling in these differential effects. Notably, these findings are strikingly different than those previously reported in male rats using the same diet regimen and behavioral paradigms, and highlight the importance of examining potential sex differences in the context of neuroimmune-associated cognitive dysfunction.


Assuntos
Dieta Hiperlipídica , Doenças Neuroinflamatórias , Ratos , Animais , Feminino , Masculino , Dieta Hiperlipídica/efeitos adversos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Tonsila do Cerebelo/metabolismo
5.
Brain Behav Immun ; 109: 235-250, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764399

RESUMO

We have previously shown that short-term (3-day) high fat diet (HFD) consumption induces a neuroinflammatory response and subsequent impairment of long-term memory in aged, but not young adult, male rats. However, the immune cell phenotypes driving this proinflammatory response are not well understood. Previously, we showed that microglia isolated from young and aged rats fed a HFD express similar levels of priming and proinflammatory transcripts, suggesting that additional factors may drive the exaggerated neuroinflammatory response selectively observed in aged HFD-fed rats. It is established that T cells infiltrate both the young and especially the aged central nervous system (CNS) and contribute to immune surveillance of the parenchyma. Thus, we investigated the modulating role of short-term HFD on T cell presence in the CNS in aged rats using bulk RNA sequencing and flow cytometry. RNA sequencing results indicate that aging and HFD altered the expression of genes and signaling pathways associated with T cell signaling, immune cell trafficking, and neuroinflammation. Moreover, flow cytometry data showed that aging alone increased CD4+ and CD8+ T cell presence in the brain and that CD8+, but not CD4+, T cells were further increased in aged rats fed a HFD. Based on these data, we selectively depleted circulating CD8+ T cells via an intravenous injection of an anti-CD8 antibody in aged rats prior to 3 days of HFD to infer the functional role these cells may be playing in long-term memory and neuroinflammation. Results indicate that peripheral depletion of CD8+ T cells lowered hippocampal cytokine levels and prevented the HFD-induced i) increase in brain CD8+ T cells, ii) memory impairment, and iii) alterations in pre- and post-synaptic structures in the hippocampus and amygdala. Together, these data indicate a substantial role for CD8+ T cells in mediating diet-induced memory impairments in aged male rats.


Assuntos
Linfócitos T CD8-Positivos , Doenças Neuroinflamatórias , Ratos , Masculino , Animais , Linfócitos T CD8-Positivos/metabolismo , Transtornos da Memória/metabolismo , Memória de Longo Prazo/fisiologia , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo
6.
J Neurosci ; 43(1): 155-172, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36384680

RESUMO

Perioperative neurocognitive disorders (PNDs) are characterized by confusion, difficulty with executive function, and episodic memory impairment in the hours to months following a surgical procedure. Postoperative cognitive dysfunction (POCD) represents such impairments that last beyond 30 d postsurgery and is associated with increased risk of comorbidities, progression to dementia, and higher mortality. While it is clear that neuroinflammation plays a key role in PND development, what factors underlie shorter self-resolving versus persistent PNDs remains unclear. We have previously shown that postoperative morphine treatment extends POCD from 4 d (without morphine) to at least 8 weeks (with morphine) in aged male rats, and that this effect is likely dependent on the proinflammatory capabilities of morphine via activation of toll-like receptor 4 (TLR4). Here, we extend these findings to show that TLR4 blockade, using the selective TLR4 antagonist lipopolysaccharide from the bacterium Rhodobacter sphaeroides (LPS-RS Ultrapure), ameliorates morphine-induced POCD in aged male rats. Using either a single central preoperative treatment or a 1 week postoperative central treatment regimen, we demonstrate that TLR4 antagonism (1) prevents and reverses the long-term memory impairment associated with surgery and morphine treatment, (2) ameliorates morphine-induced dysregulation of the postsynaptic proteins postsynaptic density 95 and synaptopodin, (3) mitigates reductions in mature BDNF, and (4) prevents decreased activation of the BDNF receptor TrkB (tropomyosin-related kinase B), all at 4 weeks postsurgery. We also reveal that LPS-RS Ultrapure likely exerts its beneficial effects by preventing endogenous danger signal HMGB1 (high-mobility group box 1) from activating TLR4, rather than by blocking continuous activation by morphine or its metabolites. These findings suggest TLR4 as a promising therapeutic target to prevent or treat PNDs.SIGNIFICANCE STATEMENT With humans living longer than ever, it is crucial that we identify mechanisms that contribute to aging-related vulnerability to cognitive impairment. Here, we show that the innate immune receptor toll-like receptor 4 (TLR4) is a key mediator of cognitive dysfunction in aged rodents following surgery and postoperative morphine treatment. Inhibition of TLR4 both prevented and reversed surgery plus morphine-associated memory impairment, dysregulation of synaptic elements, and reduced BDNF signaling. Together, these findings implicate TLR4 in the development of postoperative cognitive dysfunction, providing mechanistic insight and novel therapeutic targets for the treatment of cognitive impairments following immune challenges such as surgery in older individuals.


Assuntos
Disfunção Cognitiva , Complicações Cognitivas Pós-Operatórias , Humanos , Ratos , Masculino , Animais , Idoso , Complicações Cognitivas Pós-Operatórias/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Morfina/farmacologia , Lipopolissacarídeos/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo
7.
Brain Behav Immun Health ; 16: 100298, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34589790

RESUMO

As the prevalence of obesity and chronic disease increases, the role of nutrition is taking center stage as a potential root cause of not just metabolic-related illnesses, but also of disorders of the central nervous system (CNS). Consumption of a modern, westernized diet, such as a high fat diet (HFD) that contains excess saturated fatty acids (SFAs), refined carbohydrates, and ultra-processed ingredients has been shown to induce neuroinflammation in multiple brain regions important for energy homeostasis, cognitive function, and mood regulation in rodents, non-human primates, and humans. This review article summarizes the literature showing Western diets, via SFA increases, can increase the reactivity and alter the function of multiple types of immune cells from both the innate and adaptive branches of the immune system, with a specific focus on microglia, macrophages, dendritic cells, and T-cells. These changes in immune and neuroimmune signaling have important implications for neuroinflammation and brain health and will be an important factor in future psychoneuroimmunology research.

8.
Brain Behav Immun ; 98: 198-209, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34425209

RESUMO

The consumption of a processed foods diet (PD) enriched with refined carbohydrates, saturated fats, and lack of fiber has increased in recent decades and likely contributed to increased incidence of chronic disease and weight gain in humans. These diets have also been shown to negatively impact brain health and cognitive function in rodents, non-human primates, and humans, potentially through neuroimmune-related mechanisms. However, mechanisms by which PD impacts the aged brain are unknown. This gap in knowledge is critical, considering the aged brain has a heightened state of baseline inflammation, making it more susceptible to secondary challenges. Here, we showed that consumption of a PD, enriched with refined carbohydrate sources, for 28 days impaired hippocampal- and amygdalar-dependent memory function in aged (24 months), but not young (3 months) F344 × BN rats. These memory deficits were accompanied by increased expression of inflammatory genes, such as IL-1ß, CD11b, MHC class II, CD86, NLRP3, and complement component 3, in the hippocampus and amygdala of aged rats. Importantly, we also showed that when the same PD is supplemented with the omega-3 polyunsaturated fatty acid DHA, these memory deficits and inflammatory gene expression changes were ameliorated in aged rats, thus providing the first evidence that DHA supplementation can protect against memory deficits and inflammatory gene expression in aged rats fed a processed foods diet. Lastly, we showed that while PD consumption increased weight gain in both young and aged rats, this effect was exaggerated in aged rats. Aging was also associated with significant alterations in hypothalamic gene expression, with no impact by DHA on weight gain or hypothalamic gene expression. Together, our data provide novel insights regarding diet-brain interactions by showing that PD consumption impairs cognitive function likely through a neuroimmune mechanism and that dietary DHA can ameliorate this phenomenon.


Assuntos
Disfunção Cognitiva , Ácidos Graxos Ômega-3 , Animais , Carboidratos , Disfunção Cognitiva/prevenção & controle , Dieta , Ácidos Docosa-Hexaenoicos , Expressão Gênica , Masculino , Ratos , Ratos Endogâmicos F344
9.
Nutrients ; 13(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546416

RESUMO

There is a growing recognition that both the gut microbiome and the immune system are involved in a number of psychiatric illnesses, including eating disorders. This should come as no surprise, given the important roles of diet composition, eating patterns, and daily caloric intake in modulating both biological systems. Here, we review the evidence that alterations in the gut microbiome and immune system may serve not only to maintain and exacerbate dysregulated eating behavior, characterized by caloric restriction in anorexia nervosa and binge eating in bulimia nervosa and binge eating disorder, but may also serve as biomarkers of increased risk for developing an eating disorder. We focus on studies examining gut dysbiosis, peripheral inflammation, and neuroinflammation in each of these eating disorders, and explore the available data from preclinical rodent models of anorexia and binge-like eating that may be useful in providing a better understanding of the biological mechanisms underlying eating disorders. Such knowledge is critical to developing novel, highly effective treatments for these often intractable and unremitting eating disorders.


Assuntos
Encefalite/complicações , Transtornos da Alimentação e da Ingestão de Alimentos/etiologia , Microbioma Gastrointestinal/fisiologia , Sistema Imunitário/fisiologia , Animais , Anorexia Nervosa/etiologia , Bulimia , Bulimia Nervosa/etiologia , Restrição Calórica , Modelos Animais de Doenças , Disbiose/complicações , Encefalite/fisiopatologia , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Humanos
10.
Nutrients ; 13(1)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435203

RESUMO

The relatively rapid shift from consuming preagricultural wild foods for thousands of years, to consuming postindustrial semi-processed and ultra-processed foods endemic of the Western world less than 200 years ago did not allow for evolutionary adaptation of the commensal microbial species that inhabit the human gastrointestinal (GI) tract, and this has significantly impacted gut health. The human gut microbiota, the diverse and dynamic population of microbes, has been demonstrated to have extensive and important interactions with the digestive, immune, and nervous systems. Western diet-induced dysbiosis of the gut microbiota has been shown to negatively impact human digestive physiology, to have pathogenic effects on the immune system, and, in turn, cause exaggerated neuroinflammation. Given the tremendous amount of evidence linking neuroinflammation with neural dysfunction, it is no surprise that the Western diet has been implicated in the development of many diseases and disorders of the brain, including memory impairments, neurodegenerative disorders, and depression. In this review, we discuss each of these concepts to understand how what we eat can lead to cognitive and psychiatric diseases.


Assuntos
Encéfalo/fisiopatologia , Dieta , Microbioma Gastrointestinal , Trato Gastrointestinal/fisiopatologia , Imunidade , Envelhecimento , Dieta Ocidental , Disbiose , Humanos , Sistema Imunitário , Inflamação/etiologia , Inflamação/fisiopatologia , Doenças Neurodegenerativas
12.
Brain Behav Immun ; 89: 145-158, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32544595

RESUMO

Short-term (3-day) consumption of a high fat diet (HFD) rich in saturated fats is associated with a neuroinflammatory response and subsequent cognitive impairment in aged, but not young adult, male rats. This exaggerated effect in aged rats could be due to a "primed" microglial phenotype observed in the normal aging process in rodents in which aged microglia display a potentiated response to immune challenge. Here, we investigated the impact of HFD on microglial priming and lipid composition in the hippocampus and amygdala of young and aged rats. Furthermore, we investigated the microglial response to palmitate, the main saturated fatty acid (SFA) found in HFD that is proinflammatory. Our results indicate that HFD increased gene expression of microglial markers of activation indicative of microglial priming, including CD11b, MHCII, CX3CR1, and NLRP3, as well as the pro-inflammatory marker IL-1ß in both hippocampus and amygdala-derived microglia. Furthermore, HFD increased the concentration of SFAs and decreased the concentration of polyunsaturated fatty acids (PUFAs) in the hippocampus. We also observed a specific decrease in the anti-inflammatory PUFA docosahexaenoic acid (DHA) in the hippocampus and amygdala of aged rats. In a separate cohort of young and aged animals, isolated microglia from the hippocampus and amygdala exposed to palmitate in vitro induced an inflammatory gene expression profile mimicking the effects of HFD in vivo. These data suggest that palmitate may be a critical nutritional signal from the HFD that is directly involved in hippocampal and amygdalar inflammation. Interestingly, microglial activation markers were increased in response to HFD or palmitate in an age-independent manner, suggesting that HFD sensitivity of microglia, under these experimental conditions, is not the sole mediator of the exaggerated inflammatory response observed in whole tissue extracts from aged HFD-fed rats.


Assuntos
Ácidos Graxos , Microglia , Tonsila do Cerebelo , Animais , Dieta Hiperlipídica , Hipocampo , Masculino , Ratos
13.
Brain Behav Immun ; 87: 53-54, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32311498

RESUMO

While all groups are affected by the COVID-19 pandemic, the elderly, underrepresented minorities, and those with underlying medical conditions are at the greatest risk. The high rate of consumption of diets high in saturated fats, sugars, and refined carbohydrates (collectively called Western diet, WD) worldwide, contribute to the prevalence of obesity and type 2 diabetes, and could place these populations at an increased risk for severe COVID-19 pathology and mortality. WD consumption activates the innate immune system and impairs adaptive immunity, leading to chronic inflammation and impaired host defense against viruses. Furthermore, peripheral inflammation caused by COVID-19 may have long-term consequences in those that recover, leading to chronic medical conditions such as dementia and neurodegenerative disease, likely through neuroinflammatory mechanisms that can be compounded by an unhealthy diet. Thus, now more than ever, wider access to healthy foods should be a top priority and individuals should be mindful of healthy eating habits to reduce susceptibility to and long-term complications from COVID-19.


Assuntos
Infecções por Coronavirus/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Dieta Ocidental/estatística & dados numéricos , Inflamação/epidemiologia , Obesidade/epidemiologia , Pneumonia Viral/epidemiologia , Imunidade Adaptativa/imunologia , Betacoronavirus , COVID-19 , Infecções por Coronavirus/imunologia , Demência/epidemiologia , Demência/imunologia , Diabetes Mellitus Tipo 2/imunologia , Dieta , Suscetibilidade a Doenças , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/imunologia , Estado Nutricional , Obesidade/imunologia , Pandemias , Pneumonia Viral/imunologia , SARS-CoV-2
14.
Horm Behav ; 120: 104675, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31923417

RESUMO

Consumption of a high fat diet (HFD) increases circulating free fatty acids, which can enter the brain and promote a state of microgliosis, as defined by a change in microglia number and/or morphology. Most studies investigating diet-induced microgliosis have been conducted in male rodents despite well-documented sex differences in the neural control of food intake and neuroimmune signaling. This highlights the need to investigate how sex hormones may modulate the behavioral and cellular response to HFD consumption. Estradiol is of particular interest since it exerts a potent anorexigenic effect and has both anti-inflammatory and neuroprotective effects in the brain. As such, the aim of the current study was to investigate whether estradiol attenuates the development of HFD-induced microgliosis in female rats. Estradiol- and vehicle-treated ovariectomized rats were fed either a low-fat chow diet or a 60% HFD for 4 days, after which they were perfused and brain sections were processed via immunohistochemistry for microglia-specific Iba1 protein. Four days of HFD consumption promoted microgliosis, as measured via an increase in the number of microglia in the arcuate nucleus (ARC) of the hypothalamus and nucleus of the solitary tract (NTS), and a decrease in microglial branching in the ARC, NTS, lateral hypothalamus (LH), and ventromedial hypothalamus. Estradiol replacement attenuated the HFD-induced changes in microglia accumulation and morphology in the ARC, LH, and NTS. We conclude that estradiol has protective effects against HFD-induced microgliosis in a region-specific manner in hypothalamic and hindbrain areas implicated in the neural control of food intake.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Estradiol/farmacologia , Gliose/prevenção & controle , Microglia/efeitos dos fármacos , Ovariectomia/efeitos adversos , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/patologia , Encefalopatias/etiologia , Encefalopatias/patologia , Encefalopatias/prevenção & controle , Contagem de Células , Tamanho Celular/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Estradiol/deficiência , Feminino , Gliose/etiologia , Gliose/patologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Microglia/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/patologia
15.
Psychoneuroendocrinology ; 113: 104542, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31862611

RESUMO

Social interaction with unfamiliar individuals is necessary for species-preserving behaviors such as finding mates and establishing social groups. However, social conflict is a potential negative outcome to interaction with a stranger that can be distressing enough to cause an individual to later avoid interactions with other unfamiliar conspecifics. Unfortunately, stress research using a prominent model of social conflict, social defeat stress, has largely omitted female subjects. This has left a void in the literature regarding social strain on female stress biology and adequate comparison of the effect of sex in stress pathways. The prairie vole (Microtus ochrogaster) exhibits aggressive behavior in both sexes, making voles an attractive candidate to model social defeat in both sexes. This study sought to establish a model of social defeat stress in both male and female prairie voles, characterize behavioral changes in response to this stressor, and investigate the role of dopamine signaling in the response to social defeat stress. Defeated male and female prairie voles displayed social avoidance as well as an increase in the level of dopamine receptor D1 (DRD1) in the medial amygdala (MeA). Pharmacological manipulation of DRD1 signaling in the MeA revealed that increased DRD1 signaling is sufficient to induce a social avoidant state, and could be a necessary component in the defeat-induced social avoidance response. These findings provide the prairie vole as a model of social defeat in both sexes, and implicate the MeA in avoidance of unfamiliar conspecifics after a distressing social encounter.


Assuntos
Complexo Nuclear Corticomedial/metabolismo , Receptores de Dopamina D1/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Arvicolinae , Comportamento Animal/fisiologia , Feminino , Masculino , Receptores de Dopamina D1/fisiologia , Comportamento Social , Derrota Social , Estresse Psicológico/fisiopatologia
16.
Integr Zool ; 13(6): 673-686, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29851251

RESUMO

Eating is a basic motivated behavior that provides fuel for the body and supports brain function. To ensure survival, the brain's feeding circuits are tuned to monitor peripheral energy balance and promote food-seeking behavior when energy stores are low. The brain's bias toward a positive energy state, which is necessary to ensure adequate nutrition during times of food scarcity, is evolutionarily conserved across mammalian species and is likely to drive overeating in the presence of a palatable, energy-dense diet. Animal models of diet-induced overeating have played a vital role in investigating how the drive to consume palatable food may override the homeostatic processes that serve to maintain energy balance. These animal models have provided valuable insights into the neurobiological mechanisms underlying homeostatic and non-homeostatic eating, motivation and food reward, and the development of obesity and related comorbidities. Here, we provide a brief review of this literature and discuss how diet-induced inflammation in the central nervous system impacts the neural control of food intake and regulation of body weight. The connection between diet and the immune system provides an exciting new direction for the study of ingestive behavior and the pathophysiology of obesity.


Assuntos
Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Metabolismo Energético/fisiologia , Comportamento Alimentar , Homeostase/fisiologia , Motivação , Animais , Inflamação/etiologia
17.
Horm Behav ; 103: 54-61, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29807036

RESUMO

Many of estradiol's behavioral effects are mediated, at least partially, via extra-nuclear estradiol signaling. Here, we investigated whether two estrogen receptor (ER) agonists, targeting ERα and G protein-coupled ER-1 (GPER-1), can promote rapid anorexigenic effects. Food intake was measured in ovariectomized (OVX) rats at 1, 2, 4, and 22 h following subcutaneous (s.c.) injection of an ERα agonist (PPT; 0-200 µg/kg), a GPER-1 agonist (G-1; 0-1600 µg/kg), and a GPER-1 antagonist (G-36; 0-80 µg/kg). To investigate possible cross-talk between ERα and GPER-1, we examined whether GPER-1 blockade affects the anorexigenic effect of PPT. Feeding was monitored in OVX rats that received s.c. injections of vehicle or 40 µg/kg G-36 followed 30 min later by s.c. injections of vehicle or 200 µg/kg PPT. Selective activation of ERα and GPER-1 alone decreased food intake within 1 h of drug treatment, and feeding remained suppressed for 22 h following PPT treatment and 4 h following G-1 treatment. Acute administration of G-36 alone did not suppress feeding at any time point. Blockade of GPER-1 attenuated PPT's rapid (within 1 h) anorexigenic effect, but did not modulate PPT's ability to suppress food intake at 2, 4 and 22 h. These findings demonstrate that selective activation of ERα produces a rapid (within 1 h) decrease in food intake that is best explained by a non-genomic signaling pathway and thus implicates the involvement of extra-nuclear ERα. Our findings also provide evidence that activation of GPER-1 is both sufficient to suppress feeding and necessary for PPT's rapid anorexigenic effect.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Receptor alfa de Estrogênio/agonistas , Estrogênios/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Ciclopentanos/farmacologia , Estradiol/farmacologia , Feminino , Ovariectomia , Fenóis/farmacologia , Pirazóis/farmacologia , Quinolinas/farmacologia , Ratos , Ratos Long-Evans , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
18.
Chem Commun (Camb) ; 53(8): 1348-1365, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28070586

RESUMO

The preparation and applications of heterobimetallic complexes continue to occupy researchers in the fields of organometallic, main group, and coordination chemistry. This interest stems from the promise these complexes hold as precursors to materials, reagents in synthesis and as new catalysis. Here we survey and organise the state-of-the-art understanding of the TM-H-M linkage (M = Mg, Zn, Al, Ga). We discuss the structure and bonding in these complexes, their known reactivity, and their largely unrealised potential in catalysis.

19.
Angew Chem Int Ed Engl ; 55(24): 6951-3, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27071992

RESUMO

Reaction of a zinc/zirconium heterobimetallic complex with 1,5-cyclooctadiene (1,5-COD) results in slow isomerization to 1,3-cyclooctadiene (1,3-COD), along with the formation of a new complex that includes a cyclooctyne ligand bridging two metal centers. While analogous magnesium/zirconium and aluminum/zirconium heterobimetallic complexes are competent for the catalytic isomerization of 1,5-COD to 1,3-COD, only in the case of the zinc species is the cyclooctyne adduct observed.

20.
Psychoneuroendocrinology ; 63: 50-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26415118

RESUMO

Oxytocin (Oxt) is released in various hypothalamic and extrahypothalamic brain areas in response to anxiogenic stimuli to regulate aspects of emotionality and stress coping. We examined the anxiolytic action of Oxt in the hypothalamic paraventricular nucleus (PVN) while appraising if Oxt recruits GABA neurons to inhibit the behavioral, hormonal, and neuronal response to stress in female prairie voles (Microtus ochrogaster). Voles received an injection of Oxt in the PVN either before or after an elevated platform stress to determine a time-course for the effects of Oxt on the hormonal stress response. Subsequently, we evaluated if ante-stress injections of Oxt affected anxiety-like behaviors as well as neuronal activity in the PVN, using real-time in-vivo retrodialysis and immunohistochemistry with c-Fos expression as a biomarker of neural activity. In addition, we exposed voles to Oxt and a GABAA receptor antagonist, concurrently, to evaluate the impact of pharmacological blockade of GABAA receptors on the anxiolytic effects of Oxt. Elevated platform stress amplified anxiety-like behaviors and hypothalamic-pituitary-adrenal (HPA) axis activity-catalyzing corticotrophin-releasing hormone (CRH) neuronal activity and augmenting corticosterone release in circulation. Ante-stress Oxt injections in the PVN blocked these stress effects while promoting PVN GABA activity and release. Post-stress Oxt treatments were ineffective. The anxiolytic effects of Oxt were hindered by concurrent pharmacological blockade of GABAA receptors. Together, our data demonstrate ante-stress treatments of Oxt in the PVN inhibit stress activation of the HPA axis through recruitment of GABAergic neurons, providing insights to the local circuitry and potential therapeutically-relevant mechanisms.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Ocitócicos/farmacologia , Ocitocina/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de GABA-A/metabolismo , Animais , Arvicolinae , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Imuno-Histoquímica , Microdiálise , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...