Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 919: 170897, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346659

RESUMO

The potential increases in carbon stocks in arid regions due to recent shrub encroachment have attracted extensive interest among both ecologists and carbon policy analysts. Quantifying the shrub root biomass amount in these ecosystems is essential to understanding the ecological changes occurring. In this paper, we proposed a simple nondestructive method for estimating the coarse lateral root biomass of shrubs based on the root counts obtained from ground-penetrating radar (GPR) radargrams. Root data were gathered via field experiments using GPR with antenna center frequencies of 900 MHz and 400 MHz. Five Caragana microphylla Lam. shrubs of different sizes were selected for measuring objects, and a total of 40 GPR survey lines were established for GPR data acquisition. The soil profile wall excavation method was used to obtain the total root biomass from each radargram. A model for estimating the root biomass was built by establishing the relationship between the root biomass in each profile and the root counts interpreted from the radargrams. According to the mathematical relationship between the root diameter and root biomass, the proxy root radius was derived, which could explain the rationality of the proposed model from the biological mechanism. The established model provided high confidence in estimating the root dry biomass using the GPR data obtained at the two antenna frequencies (R2= 0.73 for 900 MHz and R2= 0.71 for 400 MHz). The leave-one-out cross-validation results showed that the model exhibits satisfactory performance. This study expands the application of geophysical methods in root research and offers a new simplified method for estimating the root biomass from GPR data under field conditions.


Assuntos
Caragana , Ecossistema , Biomassa , Radar , China , Carbono
2.
Nature ; 603(7901): 445-449, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296846

RESUMO

Savannas cover a fifth of the land surface and contribute a third of terrestrial net primary production, accounting for three-quarters of global area burned and more than half of global fire-driven carbon emissions1-3. Fire suppression and afforestation have been proposed as tools to increase carbon sequestration in these ecosystems2,4. A robust quantification of whole-ecosystem carbon storage in savannas is lacking however, especially under altered fire regimes. Here we provide one of the first direct estimates of whole-ecosystem carbon response to more than 60 years of fire exclusion in a mesic African savanna. We found that fire suppression increased whole-ecosystem carbon storage by only 35.4 ± 12% (mean ± standard error), even though tree cover increased by 78.9 ± 29.3%, corresponding to total gains of 23.0 ± 6.1 Mg C ha-1 at an average of about 0.35 ± 0.09 Mg C ha-1 year-1, more than an order of magnitude lower than previously assumed4. Frequently burned savannas had substantial belowground carbon, especially in biomass and deep soils. These belowground reservoirs are not fully considered in afforestation or fire-suppression schemes but may mean that the decadal sequestration potential of savannas is negligible, especially weighed against concomitant losses of biodiversity and function.


Assuntos
Ecossistema , Incêndios , Carbono , Pradaria , Árvores
3.
Philos Trans R Soc Lond B Biol Sci ; 377(1848): 20210008, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35184589

RESUMO

Shifting range limits are predicted for many species as the climate warms. However, the rapid pace of climate change will challenge the natural dispersal capacity of long-lived, sessile organisms such as forest trees. Adaptive responses of populations will, therefore, depend on levels of genetic variation and plasticity for climate-responsive traits, which likely vary across the range due to expansion history and current patterns of selection. Here, we study levels of genetic and plastic variation for phenology and growth traits in populations of red spruce (Picea rubens), from the range core to the highly fragmented trailing edge. We measured more than 5000 offspring sampled from three genetically distinct regions (core, margin and edge) grown in three common gardens replicated along a latitudinal gradient. Genetic variation in phenology and growth showed low to moderate heritability and differentiation among regions, suggesting some potential to respond to selection. Phenology traits were highly plastic, but this plasticity was generally neutral or maladaptive in the effect on growth, revealing a potential liability under warmer climates. These results suggest future climate adaptation will depend on the regional availability of genetic variation in red spruce and provide a resource for the design and management of assisted gene flow. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.


Assuntos
Picea , Aclimatação , Mudança Climática , Genótipo , Fenótipo , Picea/genética , Plásticos
4.
Evol Appl ; 13(9): 2190-2205, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005218

RESUMO

Understanding the factors influencing the current distribution of genetic diversity across a species range is one of the main questions of evolutionary biology, especially given the increasing threat to biodiversity posed by climate change. Historical demographic processes such as population expansion or bottlenecks and decline are known to exert a predominant influence on past and current levels of genetic diversity, and revealing this demo-genetic history can have immediate conservation implications. We used a whole-exome capture sequencing approach to analyze polymorphism across the gene space of red spruce (Picea rubens Sarg.), an endemic and emblematic tree species of eastern North America high-elevation forests that are facing the combined threat of global warming and increasing human activities. We sampled a total of 340 individuals, including populations from the current core of the range in northeastern USA and southeastern Canada and from the southern portions of its range along the Appalachian Mountains, where populations occur as highly fragmented mountaintop "sky islands." Exome capture baits were designed from the closely relative white spruce (P. glauca Voss) transcriptome, and sequencing successfully captured most regions on or near our target genes, resulting in the generation of a new and expansive genomic resource for studying standing genetic variation in red spruce applicable to its conservation. Our results, based on over 2 million exome-derived variants, indicate that red spruce is structured into three distinct ancestry groups that occupy different geographic regions of its highly fragmented range. Moreover, these groups show small Ne , with a temporal history of sustained population decline that has been ongoing for thousands (or even hundreds of thousands) of years. These results demonstrate the broad potential of genomic studies for revealing details of the demographic history that can inform management and conservation efforts of nonmodel species with active restoration programs, such as red spruce.

5.
Ecol Appl ; 27(1): 244-259, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052499

RESUMO

Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5 to 118 years located across the southeastern United States and estimated above- and belowground C trajectories. Ecosystem C stock (all pools including soil C) and aboveground live tree C increased nonlinearly with stand age and the modeled asymptotic maxima were 168 Mg C/ha and 80 Mg C/ha, respectively. Accumulation of ecosystem C with stand age was driven mainly by increases in aboveground live tree C, which ranged from <1 Mg C/ha to 74 Mg C/ha and comprised <1% to 39% of ecosystem C. Live root C (sum of below-stump C, ground penetrating radar measurement of lateral root C, and live fine root C) increased with stand age and represented 4-22% of ecosystem C. Soil C was related to site index, but not to stand age, and made up 39-92% of ecosystem C. Live understory C, forest floor C, downed dead wood C, and standing dead wood C were small fractions of ecosystem C in these frequently burned stands. Stand age and site index accounted for 76% of the variation in ecosystem C among stands. The mean root-to-shoot ratio calculated as the average across all stands (excluding the grass-stage stand) was 0.54 (standard deviation of 0.19) and higher than reports for other conifers. Long-term accumulation of live tree C, combined with the larger role of belowground accumulation of lateral root C than in other forest types, indicates a role of longleaf pine forests in providing disturbance-resistant C storage that can balance the more rapid C accumulation and C removal associated with more intensively managed forests. Although other managed southern pine systems sequester more C over the short-term, we suggest that longleaf pine forests can play a meaningful role in regional forest C management.


Assuntos
Biomassa , Sequestro de Carbono , Florestas , Pinus/fisiologia , Árvores/fisiologia , Sudeste dos Estados Unidos , Fatores de Tempo
6.
New Phytol ; 200(3): 778-787, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23528147

RESUMO

Uncertainty surrounds belowground plant responses to rising atmospheric CO2 because roots are difficult to measure, requiring frequent monitoring as a result of fine root dynamics and long-term monitoring as a result of sensitivity to resource availability. We report belowground plant responses of a scrub-oak ecosystem in Florida exposed to 11 yr of elevated atmospheric CO2 using open-top chambers. We measured fine root production, turnover and biomass using minirhizotrons, coarse root biomass using ground-penetrating radar and total root biomass using soil cores. Total root biomass was greater in elevated than in ambient plots, and the absolute difference was larger than the difference aboveground. Fine root biomass fluctuated by more than a factor of two, with no unidirectional temporal trend, whereas leaf biomass accumulated monotonically. Strong increases in fine root biomass with elevated CO2 occurred after fire and hurricane disturbance. Leaf biomass also exhibited stronger responses following hurricanes. Responses after fire and hurricanes suggest that disturbance promotes the growth responses of plants to elevated CO2. Increased resource availability associated with disturbance (nutrients, water, space) may facilitate greater responses of roots to elevated CO2. The disappearance of responses in fine roots suggests limits on the capacity of root systems to respond to CO2 enrichment.


Assuntos
Biomassa , Dióxido de Carbono/metabolismo , Ecossistema , Meio Ambiente , Raízes de Plantas/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Atmosfera , Tempestades Ciclônicas , Incêndios , Florida , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Quercus/metabolismo , Árvores/metabolismo
7.
Ecology ; 88(5): 1328-34, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17536418

RESUMO

Growth and distribution of coarse roots in time and space represent a gap in our understanding of belowground ecology. Large roots may play a critical role in carbon sequestration belowground. Using ground-penetrating radar (GPR), we quantified coarse-root biomass from an open-top chamber experiment in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. GPR propagates electromagnetic waves directly into the soil and reflects a portion of the energy when a buried object is contacted. In our study, we utilized a 1500 MHz antenna to establish correlations between GPR signals and root biomass. A significant relationship was found between GPR signal reflectance and biomass (R2 = 0.68). This correlation was applied to multiple GPR scans taken from each open-top chamber (elevated and ambient CO2). Our results showed that plots receiving elevated CO2 had significantly (P = 0.049) greater coarse-root biomass compared to ambient plots, suggesting that coarse roots may play a large role in carbon sequestration in scrub-oak ecosystems. This nondestructive method holds much promise for rapid and repeatable quantification of coarse roots, which are currently the most elusive aspect of long-term belowground studies.


Assuntos
Dióxido de Carbono/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Radar , Biomassa , Dióxido de Carbono/análise , Florida , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Solo
8.
Proc Natl Acad Sci U S A ; 103(51): 19362-7, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17159142

RESUMO

The partitioning among carbon (C) pools of the extra C captured under elevated atmospheric CO2 concentration ([CO2]) determines the enhancement in C sequestration, yet no clear partitioning rules exist. Here, we used first principles and published data from four free-air CO2 enrichment (FACE) experiments on forest tree species to conceptualize the total allocation of C to below ground (TBCA) under current [CO2] and to predict the likely effect of elevated [CO2]. We show that at a FACE site where leaf area index (L) of Pinus taeda L. was altered through nitrogen fertilization, ice-storm damage, and droughts, changes in L, reflecting the aboveground sink for net primary productivity, were accompanied by opposite changes in TBCA. A similar pattern emerged when data were combined from the four FACE experiments, using leaf area duration (LD) to account for differences in growing-season length. Moreover, elevated [CO2]-induced enhancement of TBCA in the combined data decreased from approximately 50% (700 g C m(-2) y(-1)) at the lowest LD to approximately 30% (200 g C m(-2) y(-1)) at the highest LD. The consistency of the trend in TBCA with L and its response to [CO2] across the sites provides a norm for predictions of ecosystem C cycling, and is particularly useful for models that use L to estimate components of the terrestrial C balance.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ecossistema , Fotossíntese/fisiologia , Pinus/metabolismo , Folhas de Planta/metabolismo , Árvores/metabolismo , Atmosfera/química , Dióxido de Carbono/análise , Modelos Biológicos , North Carolina , Folhas de Planta/anatomia & histologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...