Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 35(10): 109220, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107253

RESUMO

Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells-the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence.


Assuntos
Senescência Celular/genética , Dano ao DNA/genética , Mutagênicos/metabolismo , Linfócitos T/metabolismo , Humanos
2.
Cell Rep ; 35(1): 108931, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826883

RESUMO

Bacterial genotoxins cause DNA damage in eukaryotic cells, resulting in activation of the DNA damage response (DDR) in vitro. These toxins are produced by Gram-negative bacteria, enriched in the microbiota of inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients. However, their role in infection remains poorly characterized. We address the role of typhoid toxin in modulation of the host-microbial interaction in health and disease. Infection with a genotoxigenic Salmonella protects mice from intestinal inflammation. We show that the presence of an active genotoxin promotes DNA fragmentation and senescence in vivo, which is uncoupled from an inflammatory response and unexpectedly associated with induction of an anti-inflammatory environment. The anti-inflammatory response is lost when infection occurs in mice with acute colitis. These data highlight a complex context-dependent crosstalk between bacterial-genotoxin-induced DDR and the host immune response, underlining an unexpected role for bacterial genotoxins.


Assuntos
Microambiente Celular , Interações Hospedeiro-Patógeno/imunologia , Toxinas Biológicas/toxicidade , Febre Tifoide/imunologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Microambiente Celular/efeitos dos fármacos , Colite/imunologia , Colite/microbiologia , Colite/patologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Salmonella/fisiologia
3.
Cell Cycle ; 19(20): 2589-2599, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32975478

RESUMO

Basal-like triple-negative breast cancers frequently express high levels of c-Myc. This oncoprotein signals to the core cell cycle machinery by impinging on cyclin E. High levels of E-type cyclins (E1 and E2) are often seen in human triple-negative breast tumors. In the current study, we examined the requirement for E-type cyclins in the c-Myc-driven mouse model of breast cancer (MMTV-c-Myc mice). To do so, we crossed cyclin E1- (E1-/-) and E2- (E2-/-) deficient mice with MMTV-c-Myc animals, and observed the resulting cyclin E1-/-/MMTV-c-Myc and cyclin E2-/-/MMTV-c-Myc females for breast cancer incidence. We found that mice lacking cyclins E1 or E2 developed breast cancers like their cyclin Ewild-type counterparts. In contrast, further reduction of the dosage of E-cyclins in cyclin E1-/-E2+/-/MMTV-c-Myc and cyclin E1+/-E2-/-/MMTV-c-Myc animals significantly decreased the incidence of mammary carcinomas, revealing arole for E-cyclins in tumor initiation. We also observed that depletion of E-cyclins in human triple-negative breast cancer cell lines halted cell cycle progression, indicating that E-cyclins are essential for tumor cell proliferation. In contrast, we found that the catalytic partner of E-cyclins, the cyclin-dependent kinase 2 (CDK2), is dispensable for the proliferation of these cells. These results indicate that E-cyclins, but not CDK2, play essential and rate-limiting roles in driving the proliferation of c-Myc overexpressing breast cancer cells.


Assuntos
Ciclina E/genética , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Ciclo Celular/genética , Divisão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase 2 Dependente de Ciclina/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Neoplasias de Mama Triplo Negativas/patologia
4.
Sci Adv ; 6(25): eabb2210, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32704543

RESUMO

Inhibitors of cyclin-dependent kinases CDK4 and CDK6 have been approved for treatment of hormone receptor-positive breast cancers. In contrast, triple-negative breast cancers (TNBCs) are resistant to CDK4/6 inhibition. Here, we demonstrate that a subset of TNBC critically requires CDK4/6 for proliferation, and yet, these TNBC are resistant to CDK4/6 inhibition due to sequestration of CDK4/6 inhibitors into tumor cell lysosomes. This sequestration is caused by enhanced lysosomal biogenesis and increased lysosomal numbers in TNBC cells. We developed new CDK4/6 inhibitor compounds that evade the lysosomal sequestration and are efficacious against resistant TNBC. We also show that coadministration of lysosomotropic or lysosome-destabilizing compounds (an antibiotic azithromycin, an antidepressant siramesine, an antimalaria compound chloroquine) renders resistant tumor cells sensitive to currently used CDK4/6 inhibitors. Lastly, coinhibition of CDK2 arrested proliferation of CDK4/6 inhibitor-resistant cells. These observations may extend the use of CDK4/6 inhibitors to TNBCs that are refractory to current anti-CDK4/6 therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...