Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CRISPR J ; 6(3): 261-277, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272861

RESUMO

Type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 nucleases have been extensively used in biotechnology and therapeutics. However, many applications are not possible owing to the size, targetability, and potential off-target effects associated with currently known systems. In this study, we identified thousands of CRISPR type II effectors by mining an extensive, genome-resolved metagenomics database encompassing hundreds of thousands of microbial genomes. We developed a high-throughput pipeline that enabled us to predict tracrRNA sequences, to design single guide RNAs, and to demonstrate nuclease activity in vitro for 41 newly described subgroups. Active systems represent an extensive diversity of protein sequences and guide RNA structures and require diverse protospacer adjacent motifs (PAMs) that collectively expand the known targeting capability of current systems. Several nucleases showed activity levels comparable to or significantly higher than SpCas9, despite being smaller in size. In addition, top systems exhibited low levels of off-target editing in mammalian cells, and PAM-interacting domain engineered chimeras further expanded their targetability. These newly discovered nucleases are attractive enzymes for translation into many applications, including therapeutics.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Biotecnologia , RNA Guia de Sistemas CRISPR-Cas , Mamíferos/genética , Mamíferos/metabolismo
2.
CRISPR J ; 6(3): 243-260, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219969

RESUMO

Development of medicines using gene editing has been hampered by enzymological and immunological impediments. We described previously the discovery and characterization of improved, novel gene-editing systems from metagenomic data. In this study, we substantially advance this work with three such gene-editing systems, demonstrating their utility for cell therapy development. All three systems are capable of reproducible, high-frequency gene editing in primary immune cells. In human T cells, disruption of the T cell receptor (TCR) alpha-chain was induced in >95% of cells, both paralogs of the TCR beta-chain in >90% of cells, and >90% knockout of ß2-microglobulin, TIGIT, FAS, and PDCD1. Simultaneous double knockout of TRAC and TRBC was obtained at a frequency equal to that of the single edits. Gene editing with our systems had minimal effect on T cell viability. Furthermore, we integrate a chimeric antigen receptor (CAR) construct into TRAC (up to ∼60% of T cells), and demonstrate CAR expression and cytotoxicity. We next applied our novel gene-editing tools to natural killer (NK) cells, B cells, hematopoietic stem cells, and induced pluripotent stem cells, generating similarly efficient cell-engineering outcomes including the creation of active CAR-NK cells. Interrogation of our gene-editing systems' specificity reveals a profile comparable with or better than Cas9. Finally, our nucleases lack preexisting humoral and T cell-based immunity, consistent with their sourcing from nonhuman pathogens. In all, we show these new gene-editing systems have the activity, specificity, and translatability necessary for use in cell therapy development.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Linfócitos T/metabolismo , Diferenciação Celular , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Nat Commun ; 13(1): 7602, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522342

RESUMO

Programmable, RNA-guided nucleases are diverse enzymes that have been repurposed for biotechnological applications. However, to further expand the therapeutic application of these tools there is a need for targetable systems that are small enough to be delivered efficiently. Here, we mined an extensive genome-resolved metagenomics database and identified families of uncharacterized RNA-guided, compact nucleases (between 450 and 1,050 aa). We report that Cas9d, a new CRISPR type II subtype, contains Zinc-finger motifs and high arginine content, features that we also found in nucleases related to HEARO effectors. These enzymes exhibit diverse biochemical characteristics and are broadly targetable. We show that natural Cas9d enzymes are capable of genome editing in mammalian cells with >90% efficiency, and further engineered nickase variants into the smallest base editors active in E. coli and human cells. Their small size, broad targeting potential, and translatability suggest that Cas9d and HEARO systems will enable a variety of genome editing applications.


Assuntos
Escherichia coli , Edição de Genes , Animais , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ribonucleases/genética , RNA , Sistemas CRISPR-Cas/genética , Mamíferos/genética
4.
CRISPR J ; 3(6): 454-461, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33146573

RESUMO

Cas12a enzymes are quickly being adopted for use in a variety of genome-editing applications. These programmable nucleases are part of adaptive microbial immune systems, the natural diversity of which has been largely unexplored. Here, we identified novel families of Type V-A CRISPR nucleases through a large-scale analysis of metagenomes collected from a variety of complex environments, and developed representatives of these systems into gene-editing platforms. The nucleases display extensive protein variation and can be programmed by a single-guide RNA with specific motifs. The majority of these enzymes are part of systems recovered from uncultivated organisms, some of which also encode a divergent Type V effector. Biochemical analysis uncovered unexpected protospacer adjacent motif diversity, indicating that these systems will facilitate a variety of genome-engineering applications. The simplicity of guide sequences and activity in human cell lines suggest utility in gene and cell therapies.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/isolamento & purificação , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/isolamento & purificação , Endodesoxirribonucleases/metabolismo , Edição de Genes/métodos , Bactérias/genética , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endodesoxirribonucleases/genética , Endonucleases/genética , Edição de Genes/tendências , Humanos , Metagenômica/métodos , Filogenia , RNA Guia de Cinetoplastídeos/genética
5.
Nature ; 558(7710): 440-444, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899444

RESUMO

In soil ecosystems, microorganisms produce diverse secondary metabolites such as antibiotics, antifungals and siderophores that mediate communication, competition and interactions with other organisms and the environment1,2. Most known antibiotics are derived from a few culturable microbial taxa 3 , and the biosynthetic potential of the vast majority of bacteria in soil has rarely been investigated 4 . Here we reconstruct hundreds of near-complete genomes from grassland soil metagenomes and identify microorganisms from previously understudied phyla that encode diverse polyketide and nonribosomal peptide biosynthetic gene clusters that are divergent from well-studied clusters. These biosynthetic loci are encoded by newly identified members of the Acidobacteria, Verrucomicobia and Gemmatimonadetes, and the candidate phylum Rokubacteria. Bacteria from these groups are highly abundant in soils5-7, but have not previously been genomically linked to secondary metabolite production with confidence. In particular, large numbers of biosynthetic genes were characterized in newly identified members of the Acidobacteria, which is the most abundant bacterial phylum across soil biomes 5 . We identify two acidobacterial genomes from divergent lineages, each of which encodes an unusually large repertoire of biosynthetic genes with up to fifteen large polyketide and nonribosomal peptide biosynthetic loci per genome. To track gene expression of genes encoding polyketide synthases and nonribosomal peptide synthetases in the soil ecosystem that we studied, we sampled 120 time points in a microcosm manipulation experiment and, using metatranscriptomics, found that gene clusters were differentially co-expressed in response to environmental perturbations. Transcriptional co-expression networks for specific organisms associated biosynthetic genes with two-component systems, transcriptional activation, putative antimicrobial resistance and iron regulation, linking metabolite biosynthesis to processes of environmental sensing and ecological competition. We conclude that the biosynthetic potential of abundant and phylogenetically diverse soil microorganisms has previously been underestimated. These organisms may represent a source of natural products that can address needs for new antibiotics and other pharmaceutical compounds.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Vias Biossintéticas/genética , Metabolismo Secundário/genética , Microbiologia do Solo , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Família Multigênica/genética
6.
mBio ; 8(1)2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28223457

RESUMO

In this study, strain-resolved metagenomics was used to solve a mystery. A 6.4-Mbp complete closed genome was recovered from a soil metagenome and found to be astonishingly similar to that of Delftia acidovorans SPH-1, which was isolated in Germany a decade ago. It was suspected that this organism was not native to the soil sample because it lacked the diversity that is characteristic of other soil organisms; this suspicion was confirmed when PCR testing failed to detect the bacterium in the original soil samples. D. acidovorans was also identified in 16 previously published metagenomes from multiple environments, but detailed-scale single nucleotide polymorphism analysis grouped these into five distinct clades. All of the strains indicated as contaminants fell into one clade. Fragment length anomalies were identified in paired reads mapping to the contaminant clade genotypes only. This finding was used to establish that the DNA was present in specific size selection reagents used during sequencing. Ultimately, the source of the contaminant was identified as bacterial biofilms growing in tubing. On the basis of direct measurement of the rate of fixation of mutations across the period of time in which contamination was occurring, we estimated the time of separation of the contaminant strain from the genomically sequenced ancestral population within a factor of 2. This research serves as a case study of high-resolution microbial forensics and strain tracking accomplished through metagenomics-based comparative genomics. The specific case reported here is unusual in that the study was conducted in the background of a soil metagenome and the conclusions were confirmed by independent methods.IMPORTANCE It is often important to determine the source of a microbial strain. Examples include tracking a bacterium linked to a disease epidemic, contaminating the food supply, or used in bioterrorism. Strain identification and tracking are generally approached by using cultivation-based or relatively nonspecific gene fingerprinting methods. Genomic methods have the ability to distinguish strains, but this approach typically has been restricted to isolates or relatively low-complexity communities. We demonstrate that strain-resolved metagenomics can be applied to extremely complex soil samples. We genotypically defined a soil-associated bacterium and identified it as a contaminant. By linking together snapshots of the bacterial genome over time, it was possible to estimate how long the contaminant had been diverging from a likely source population. The results are congruent with the derivation of the bacterium from a strain isolated in Germany and sequenced a decade ago and highlight the utility of metagenomics in strain tracking.


Assuntos
Delftia acidovorans/classificação , Delftia acidovorans/isolamento & purificação , Microbiologia Ambiental , Metagenômica , Análise por Conglomerados , Delftia acidovorans/genética , Genótipo , Alemanha
7.
Metallomics ; 9(2): 183-191, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28128836

RESUMO

Manganese(ii) oxidation in the environment is thought to be driven by bacteria because enzymatic catalysis is many orders of magnitude faster than the abiotic processes. The heterologously purified Mn oxidase (Mnx) from marine Bacillus sp. PL-12 is made up of the multicopper oxidase (MCO) MnxG and two small Cu and heme-binding proteins of unknown function, MnxE and MnxF. Mnx binds Cu and oxidizes both Mn(ii) and Mn(iii), generating Mn(iv) oxide minerals that resemble those found on the Bacillus spore surface. Spectroscopic techniques have illuminated details about the metallo-cofactors of Mnx, but very little is known about their requirement for catalytic activity, and even less is known about the substrate specificity of Mnx. Here we quantify the canonical MCO Cu and persistent peripheral Cu bound to Mnx, and test Mnx oxidizing ability toward different substrates at varying pH. Mn(ii) appears to be the best substrate in terms of kcat, but its oxidation does not follow Michaelis-Menten kinetics, instead showing a sigmoidal cooperative behavior. Mnx also oxidizes Fe(ii) substrate, but in a Michaelis-Menten manner and with a decreased activity, as well as organic substrates. The reduced metals are more rapidly consumed than the larger organic substrates, suggesting the hypothesis that the Mnx substrate site is small and tuned for metal oxidation. Of biological relevance is the result that Mnx has the highest catalytic efficiency for Mn(ii) at the pH of sea water, especially when the protein is loaded with greater than the requisite four MCO copper atoms, suggesting that the protein has evolved specifically for Mn oxidation.


Assuntos
Bacillus/enzimologia , Cobre/metabolismo , Manganês/química , Oxirredutases/metabolismo , Oxirredução , Oxirredutases/química , Especificidade por Substrato
8.
Chemistry ; 23(6): 1346-1352, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27726210

RESUMO

In a natural geochemical cycle, manganese-oxide minerals (MnOx ) are principally formed through a microbial process, where a putative multicopper oxidase MnxG plays an essential role. Recent success in isolating the approximately 230 kDa, enzymatically active MnxEFG protein complex, has advanced our understanding of biogenic MnOx mineralization. Here, the kinetics of MnOx formation catalyzed by MnxEFG are examined using a quartz crystal microbalance (QCM), and the first electrochemical characterization of the MnxEFG complex is reported using Fourier transformed alternating current voltammetry. The voltammetric studies undertaken using near-neutral solutions (pH 7.8) establish the apparent reversible potentials for the Type 2 Cu sites in MnxEFG immobilized on a carboxy-terminated monolayer to be in the range 0.36-0.40 V versus a normal hydrogen electrode. Oxidative priming of the MnxEFG protein complex substantially enhances the enzymatic activity, as found by in situ electrochemical QCM analysis. The biogeochemical significance of this enzyme is clear, although the role of an oxidative priming of catalytic activity might be either an evolutionary advantage or an ancient relic of primordial existence.


Assuntos
Compostos de Manganês/metabolismo , Óxidos/metabolismo , Oxirredutases/metabolismo , Biocatálise , Técnicas Eletroquímicas , Cinética , Microscopia Eletrônica de Varredura , Técnicas de Microbalança de Cristal de Quartzo , Espectrometria por Raios X
9.
PeerJ ; 4: e2687, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27843720

RESUMO

Annually, half of all plant-derived carbon is added to soil where it is microbially respired to CO2. However, understanding of the microbiology of this process is limited because most culture-independent methods cannot link metabolic processes to the organisms present, and this link to causative agents is necessary to predict the results of perturbations on the system. We collected soil samples at two sub-root depths (10-20 cm and 30-40 cm) before and after a rainfall-driven nutrient perturbation event in a Northern California grassland that experiences a Mediterranean climate. From ten samples, we reconstructed 198 metagenome-assembled genomes that represent all major phylotypes. We also quantified 6,835 proteins and 175 metabolites and showed that after the rain event the concentrations of many sugars and amino acids approach zero at the base of the soil profile. Unexpectedly, the genomes of novel members of the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways for methylotrophy. We infer that these abundant organisms contribute substantially to carbon turnover in the soil, given that methylotrophy proteins were among the most abundant proteins in the proteome. Previously undescribed Bathyarchaeota and Thermoplasmatales archaea are abundant in deeper soil horizons and are inferred to contribute appreciably to aromatic amino acid degradation. Many of the other bacteria appear to breakdown other components of plant biomass, as evidenced by the prevalence of various sugar and amino acid transporters and corresponding hydrolyzing machinery in the proteome. Overall, our work provides organism-resolved insight into the spatial distribution of bacteria and archaea whose activities combine to degrade plant-derived organics, limiting the transport of methanol, amino acids and sugars into underlying weathered rock. The new insights into the soil carbon cycle during an intense period of carbon turnover, including biogeochemical roles to previously little known soil microbes, were made possible via the combination of metagenomics, proteomics, and metabolomics.

10.
Nat Microbiol ; 1: 16048, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27572647

RESUMO

The tree of life is one of the most important organizing principles in biology(1). Gene surveys suggest the existence of an enormous number of branches(2), but even an approximation of the full scale of the tree has remained elusive. Recent depictions of the tree of life have focused either on the nature of deep evolutionary relationships(3-5) or on the known, well-classified diversity of life with an emphasis on eukaryotes(6). These approaches overlook the dramatic change in our understanding of life's diversity resulting from genomic sampling of previously unexamined environments. New methods to generate genome sequences illuminate the identity of organisms and their metabolic capacities, placing them in community and ecosystem contexts(7,8). Here, we use new genomic data from over 1,000 uncultivated and little known organisms, together with published sequences, to infer a dramatically expanded version of the tree of life, with Bacteria, Archaea and Eukarya included. The depiction is both a global overview and a snapshot of the diversity within each major lineage. The results reveal the dominance of bacterial diversification and underline the importance of organisms lacking isolated representatives, with substantial evolution concentrated in a major radiation of such organisms. This tree highlights major lineages currently underrepresented in biogeochemical models and identifies radiations that are probably important for future evolutionary analyses.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Eucariotos/classificação , Eucariotos/genética , Filogenia , Biodiversidade , Ecossistema , Evolução Molecular
11.
Microbiol Spectr ; 4(2)2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27227313

RESUMO

Bacteria are one of the premier biological forces that, in combination with chemical and physical forces, drive metal availability in the environment. Bacterial spores, when found in the environment, are often considered to be dormant and metabolically inactive, in a resting state waiting for favorable conditions for them to germinate. However, this is a highly oversimplified view of spores in the environment. The surface of bacterial spores represents a potential site for chemical reactions to occur. Additionally, proteins in the outer layers (spore coats or exosporium) may also have more specific catalytic activity. As a consequence, bacterial spores can play a role in geochemical processes and may indeed find uses in various biotechnological applications. The aim of this review is to introduce the role of bacteria and bacterial spores in biogeochemical cycles and their potential use as toxic metal bioremediation agents.


Assuntos
Bactérias/metabolismo , Metais/metabolismo , Esporos Bacterianos/metabolismo , Recuperação e Remediação Ambiental , Metais/toxicidade
12.
Biochim Biophys Acta ; 1854(12): 1853-1859, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26327317

RESUMO

Multicopper oxidases (MCOs) catalyze the oxidation of a diverse group of metal ions and organic substrates by successive single-electron transfers to O2 via four bound Cu ions. MnxG, which catalyzes MnO2 mineralization by oxidizing both Mn(II) and Mn(III), is unique among multicopper oxidases in that it carries out two energetically distinct electron transfers and is tightly bound to accessory proteins. There are two of these, MnxE and MnxF, both approximately 12kDa. Although their sequences are similar to those found in the genomes of several Mn-oxidizing Bacillus species, they are dissimilar to those of proteins with known function. Here, MnxE and MnxF are co-expressed independent of MnxG and are found to oligomerize into a higher order stoichiometry, likely a hexamer. They bind copper and heme, which have been characterized by electron paramagnetic resonance (EPR), X-ray absorption spectroscopy (XAS), and UV-visible (UV-vis) spectrophotometry. Cu is found in two distinct type 2 (T2) copper centers, one of which appears to be novel; heme is bound as a low-spin species, implying coordination by two axial ligands. MnxE and MnxF do not oxidize Mn in the absence of MnxG and are the first accessory proteins to be required by an MCO. This may indicate that Cu and heme play roles in electron transfer and/or Cu trafficking.


Assuntos
Cobre/química , Heme/química , Compostos de Manganês/química , Óxidos/química , Biopolímeros/química
13.
J Am Chem Soc ; 137(33): 10563-75, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26244911

RESUMO

The dynamics of manganese solid formation (as MnOx) by the multicopper oxidase (MCO)-containing Mnx protein complex were examined by electron paramagnetic resonance (EPR) spectroscopy. Continuous-wave (CW) EPR spectra of samples of Mnx, prepared in atmosphere and then reacted with Mn(II) for times ranging from 7 to 600 s, indicate rapid oxidation of the substrate manganese (with two-phase pseudo-first-order kinetics modeled using rate coefficients of: k(1obs) = 0.205 ± 0.001 s(-1) and k(2obs) = 0.019 ± 0.001 s(-1)). This process occurs on approximately the same time scale as in vitro solid MnOx formation when there is a large excess of Mn(II). We also found CW and pulse EPR spectroscopic evidence for at least three classes of Mn(II)-containing species in the reaction mixtures: (i) aqueous Mn(II), (ii) a specifically bound mononuclear Mn(II) ion coordinated to the Mnx complex by one nitrogenous ligand, and (iii) a weakly exchange-coupled dimeric Mn(II) species. These findings provide new insights into the molecular mechanism of manganese mineralization.


Assuntos
Manganês/metabolismo , Oxirredutases/metabolismo , Animais , Bacillus/enzimologia , Bovinos , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Manganês/química , Oxirredução , Óxidos/química , Óxidos/metabolismo , Oxirredutases/química , Ligação Proteica
14.
Proc Natl Acad Sci U S A ; 110(29): 11731-5, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818588

RESUMO

Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.


Assuntos
Bacillus/enzimologia , Compostos de Manganês/metabolismo , Manganês/metabolismo , Complexos Multiproteicos/metabolismo , Óxidos/metabolismo , Oxirredutases/metabolismo , Clonagem Molecular , Primers do DNA/genética , Difosfatos/metabolismo , Escherichia coli , Espectrometria de Massas , Oxirredução , Espectroscopia por Absorção de Raios X
15.
Biochem Soc Trans ; 40(6): 1244-8, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23176462

RESUMO

Micro-organisms capable of oxidizing the redox-active transition metal manganese play an important role in the biogeochemical cycle of manganese. In the present mini-review, we focus specifically on Mn(II)-oxidizing bacteria. The mechanisms by which bacteria oxidize Mn(II) include a two-electron oxidation reaction catalysed by a novel multicopper oxidase that produces Mn(IV) oxides as the primary product. Bacteria also produce organic ligands, such as siderophores, that bind to and stabilize Mn(III). The realization that this stabilized Mn(III) is present in many environments and can affect the redox cycles of other elements such as sulfur has made it clear that manganese and the bacteria that oxidize it profoundly affect the Earth's biogeochemistry.


Assuntos
Bactérias Gram-Positivas/metabolismo , Compostos de Manganês/metabolismo , Óxidos/metabolismo , Proteobactérias/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Sequência Conservada , Bactérias Gram-Positivas/enzimologia , Oxirredução , Oxirredutases/química , Oxirredutases/fisiologia , Estrutura Terciária de Proteína , Proteobactérias/enzimologia
16.
J Biol Inorg Chem ; 17(8): 1151-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22892957

RESUMO

Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO(2) formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria indicates that multicopper oxidases (MCOs) are required for MnO(2) formation. However, MCOs catalyze one-electron oxidations, whereas the conversion of Mn(II) to MnO(2) is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O(2) and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO(2) also depends on O(2) and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, which is indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO(2) formation.


Assuntos
Bactérias/química , Compostos de Manganês/química , Manganês/química , Óxidos/química , Oxirredutases/química , Azidas/farmacologia , Bactérias/enzimologia , Bactérias/metabolismo , Manganês/metabolismo , Compostos de Manganês/metabolismo , Microscopia Eletrônica de Transmissão , Oxirredução , Óxidos/metabolismo , Oxirredutases/antagonistas & inibidores , Oxigênio/química
17.
Development ; 138(5): 839-48, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21270053

RESUMO

Multiple small molecule hormones contribute to growth promotion or restriction in plants. Brassinosteroids (BRs), acting specifically in the epidermis, can both drive and restrict shoot growth. However, our knowledge of how BRs affect meristem size is scant. Here, we study the root meristem and show that BRs are required to maintain normal cell cycle activity and cell expansion. These two processes ensure the coherent gradient of cell progression, from the apical to the basal meristem. In addition, BR activity in the meristem is not accompanied by changes in the expression level of the auxin efflux carriers PIN1, PIN3 and PIN7, which are known to control the extent of mitotic activity and differentiation. We further demonstrate that BR signaling in the root epidermis and not in the inner endodermis, quiescent center (QC) cells or stele cell files is sufficient to control root meristem size. Interestingly, expression of the QC and the stele-enriched MADS-BOX gene AGL42 can be modulated by BRI1 activity solely in the epidermis. The signal from the epidermis is probably transmitted by a different component than BES1 and BZR1 transcription factors, as their direct targets, such as DWF4 and BRox2, are regulated in the same cells that express BRI1. Taken together, our study provides novel insights into the role of BRs in controlling meristem size.


Assuntos
Colestanóis/metabolismo , Meristema/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas , Esteroides Heterocíclicos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Brassinosteroides , Ciclo Celular , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Fitosteróis , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 105(39): 15190-5, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18818305

RESUMO

Plant growth depends on the integration of environmental cues and phytohormone-signaling pathways. During seedling emergence, elongation of the embryonic stem (hypocotyl) serves as a readout for light and hormone-dependent responses. We screened 10,000 chemicals provided exogenously to light-grown seedlings and identified 100 compounds that promote hypocotyl elongation. Notably, one subset of these chemicals shares structural characteristics with the synthetic auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), and 1-naphthaleneacetic acid (1-NAA); however, traditional auxins (e.g., indole-3-acetic acid [IAA], 2,4-D, 1-NAA) have no effect on hypocotyl elongation. We show that the new compounds act as "proauxins" akin to prodrugs. Our data suggest that these compounds diffuse efficiently to the hypocotyls, where they undergo cleavage at varying rates, releasing functional auxins. To investigate this principle, we applied a masking strategy and designed a pro-2,4-D. Unlike 2,4-D alone, this pro-2,4-D enhanced hypocotyl elongation. We further demonstrated the utility of the proauxins by characterizing auxin responses in light-grown hypocotyls of several auxin receptor mutants. These new compounds thus provide experimental access to a tissue previously inaccessible to exogenous application of auxins. Our studies exemplify the combined power of chemical genetics and biochemical analyses for discovering and refining prohormone analogs with selective activity in specific plant tissues. In addition to the utility of these compounds for addressing questions related to auxin and light-signaling interactions, one can envision using these simple principles to study other plant hormone and small molecule responses in temporally and spatially controlled ways.


Assuntos
Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Cromatografia Líquida/métodos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/isolamento & purificação , Espectrometria de Massas/métodos , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/isolamento & purificação , Proteínas de Plantas/agonistas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...