Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 204(4): 915-930, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613574

RESUMO

Insect herbivores and their parasitoids play a crucial role in terrestrial trophic interactions in tropical forests. These interactions occur across the entire vertical gradient of the forest. This study compares how caterpillar communities, and their parasitism rates, vary across vertical strata and between caterpillar defensive strategies in a semi deciduous tropical forest in Nditam, Cameroon. Within a 0.1 ha plot, all trees with a diameter at breast height (DBH) ≥ 5 cm were felled and systematically searched for caterpillars. We divided the entire vertical gradient of the forest into eight, five-metre strata. All caterpillars were assigned to a stratum based on their collection height, reared, identified, and classified into one of three defensive traits: aposematic, cryptic and shelter-building. Caterpillar species richness and diversity showed a midstory peak, whereas density followed the opposite pattern, decreasing in the midstory and then increasing towards the highest strata. This trend was driven by some highly dense shelter-building caterpillars in the upper canopy. Specialisation indices indicated decreasing levels of caterpillar generality with increasing height, a midstory peak in vulnerability, and increasing connectance towards the upper canopy, although the latter was likely driven by decreasing network size. Both aposematic and shelter-building caterpillars had significantly higher parasitism rates than cryptic caterpillars. Our results highlight nuanced changes in caterpillar communities across forest strata and provide evidence that defences strategies are important indicators of parasitism rates in caterpillars and that both aposematic and shelter-building caterpillars could be considered a "safe haven" for parasitoids.


Assuntos
Florestas , Larva , Animais , Camarões , Herbivoria , Clima Tropical , Interações Hospedeiro-Parasita
2.
PLoS One ; 14(10): e0222119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31644586

RESUMO

Research on canopy arthropods has progressed from species inventories to the study of their interactions and networks, enhancing our understanding of how hyper-diverse communities are maintained. Previous studies often focused on sampling individual tree species, individual trees or their parts. We argue that such selective sampling is not ideal when analyzing interaction network structure, and may lead to erroneous conclusions. We developed practical and reproducible sampling guidelines for the plot-based analysis of arthropod interaction networks in forest canopies. Our sampling protocol focused on insect herbivores (leaf-chewing insect larvae, miners and gallers) and non-flying invertebrate predators (spiders and ants). We quantitatively sampled the focal arthropods from felled trees, or from trees accessed by canopy cranes or cherry pickers in 53 0.1 ha forest plots in five biogeographic regions, comprising 6,280 trees in total. All three methods required a similar sampling effort and provided good foliage accessibility. Furthermore, we compared interaction networks derived from plot-based data to interaction networks derived from simulated non-plot-based data focusing either on common tree species or a representative selection of tree families. All types of non-plot-based data showed highly biased network structure towards higher connectance, higher web asymmetry, and higher nestedness temperature when compared with plot-based data. Furthermore, some types of non-plot-based data showed biased diversity of the associated herbivore species and specificity of their interactions. Plot-based sampling thus appears to be the most rigorous approach for reconstructing realistic, quantitative plant-arthropod interaction networks that are comparable across sites and regions. Studies of plant interactions have greatly benefited from a plot-based approach and we argue that studies of arthropod interactions would benefit in the same way. We conclude that plot-based studies on canopy arthropods would yield important insights into the processes of interaction network assembly and dynamics, which could be maximised via a coordinated network of plot-based study sites.


Assuntos
Artrópodes/fisiologia , Interações Hospedeiro-Parasita , Plantas/parasitologia , Animais , Florestas , Larva/fisiologia , Árvores/parasitologia
3.
Biochem Biophys Res Commun ; 492(4): 652-658, 2017 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-28322784

RESUMO

The RNA-dependent RNA polymerases of Flaviviridae viruses are crucial for replication. The Flaviviridae polymerase is organized into structural motifs (A-G), with motifs F, A, C and E containing interrogating, priming and catalytic substrate-interacting sites. Modified nucleoside analogues act as antiviral drugs by targeting Flaviviridae polymerases and integrating into the synthesized product causing premature termination. A threonine mutation of a conserved serine residue in motif B of Flaviviridae polymerases renders resistance to 2'-C-methylated nucleoside analogues. The mechanism how this single mutation causes Flaviviridae viruses to escape nucleoside analogues is not yet known. Given the pivotal position of the serine residue in motif B that supports motif F, we hypothesized the threonine mutation causes alterations in nucleoside exploration within the entry tunnel. Implementing a stochastic molecular software showed the all-atom 2'-C-methylated analogue reaction within the active sites of wild type and serine-threonine mutant polymerases from Hepacivirus and Flavivirus. Compared with the wild type, the serine-threonine mutant polymerases caused a significant decrease of analogue contacts with conserved interrogating residues in motif F and a displacement of metal ion cofactors. The simulations significantly showed that during the analogue exploration of the active site the hydrophobic methyl group in the serine-threonine mutant repels water-mediated hydrogen bonds with the 2'-C-methylated analogue, causing a concentration of water-mediated bonds at the substrate-interacting sites. Collectively, the data are an insight into a molecular escape mechanism by Flaviviridae viruses from 2'-C-methylated nucleoside analogue inhibitors.


Assuntos
Inibidores Enzimáticos/química , Flaviviridae/química , Flaviviridae/enzimologia , Nucleosídeos/química , RNA Polimerase Dependente de RNA/química , Sítios de Ligação , Ativação Enzimática , Ligação Proteica
4.
J Anim Ecol ; 86(3): 556-565, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28146344

RESUMO

Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper plant lineages that drives the food web structure whereas the terminal relationships play minor roles. In contrast, the specialization and abundance of monophagous guilds are affected mainly by the terminal parts of the plant phylogeny and do not generally reflect deeper host phylogeny.


Assuntos
Cadeia Alimentar , Florestas , Herbivoria , Insetos/fisiologia , Magnoliopsida/classificação , Filogenia , Animais , República Tcheca , Insetos/crescimento & desenvolvimento , Japão , Larva/fisiologia , Folhas de Planta/fisiologia
5.
Sci Rep ; 6: 32372, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27584086

RESUMO

Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia.


Assuntos
Grupo Borrelia Burgdorferi/fisiologia , Ixodes/metabolismo , Ixodes/microbiologia , Lipocalinas/metabolismo , Saliva/metabolismo , Análise de Variância , Animais , Sequência de Bases , Sítios de Ligação , Vetores de Doenças , Ixodes/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Ligantes , Lipocalinas/química , Lipocalinas/classificação , Doença de Lyme/microbiologia , Camundongos , Filogenia , Estrutura Terciária de Proteína
6.
J Gen Virol ; 97(10): 2552-2565, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27489039

RESUMO

Natural 2'-modified nucleosides are the most widely used antiviral therapy. In their triphosphorylated form, also known as nucleotide analogues, they target the active site of viral polymerases. Viral polymerases have an overall right-handed structure that includes the palm, fingers and thumb domains. These domains are further subdivided into structurally conserved motifs A-G, common to all viral polymerases. The structural motifs encapsulate the allosteric/initiation (N1) and orthosteric/catalytic (N2) nucleotide-binding sites. The current study investigated how nucleotide analogues explore the N2 site of viral polymerases from three genera of the family Flaviviridae using a stochastic, biophysical, Metropolis Monte Carlo-based software. The biophysical simulations showed a statistical distinction in nucleotide-binding energy and exploration between phylogenetically related viral polymerases. This distinction is clearly demonstrated by the respective analogue contacts made with conserved viral polymerase residues, the heterogeneous dynamics of structural motifs, and the orientation of the nucleotide analogues within the N2 site. Being able to simulate what occurs within viral-polymerase-binding sites can prove useful in rational drug designs against viruses.


Assuntos
Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Flaviviridae/efeitos dos fármacos , Flaviviridae/enzimologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Antivirais/química , Sítios de Ligação , Domínio Catalítico , RNA Polimerases Dirigidas por DNA/metabolismo , Desenho de Fármacos , Flaviviridae/química , Flaviviridae/genética , Humanos , Nucleosídeos/química , Nucleosídeos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Evol Appl ; 8(10): 972-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26640522

RESUMO

Disruption of species interactions is a key issue in climate change biology. Interactions involving forest trees may be particularly vulnerable due to evolutionary rate limitations imposed by long generation times. One mitigation strategy for such impacts is Climate matching - the augmentation of local native tree populations by input from nonlocal populations currently experiencing predicted future climates. This strategy is controversial because of potential cascading impacts on locally adapted animal communities. We explored these impacts using abundance data for local native gallwasp herbivores sampled from 20 provenances of sessile oak (Quercus petraea) planted in a common garden trial. We hypothesized that non-native provenances would show (i) declining growth performance with increasing distance between provenance origin and trial site, and (ii) phenological differences to local oaks that increased with latitudinal differences between origin and trial site. Under a local adaptation hypothesis, we predicted declining gallwasp abundance with increasing phenological mismatch between native and climate-matched trees. Both hypotheses for oaks were supported. Provenance explained significant variation in gallwasp abundance, but no gall type showed the relationship between abundance and phenological mismatch predicted by a local adaptation hypothesis. Our results show that climate matching would have complex and variable impacts on oak gall communities.

8.
Proc Natl Acad Sci U S A ; 112(2): 442-7, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548168

RESUMO

Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.


Assuntos
Dieta , Herbivoria/fisiologia , Insetos/fisiologia , Animais , Biodiversidade , Ecossistema , Especificidade de Hospedeiro , Insetos/classificação , Lepidópteros/classificação , Lepidópteros/fisiologia , Modelos Biológicos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...