Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroergon ; 5: 1283290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444841

RESUMO

Functional near-infrared spectroscopy (fNIRS) is a widely used imaging method for mapping brain activation based on cerebral hemodynamics. The accurate quantification of cortical activation using fNIRS data is highly dependent on the ability to correctly localize the positions of light sources and photodetectors on the scalp surface. Variations in head size and shape across participants greatly impact the precise locations of these optodes and consequently, the regions of the cortical surface being reached. Such variations can therefore influence the conclusions drawn in NIRS studies that attempt to explore specific cortical regions. In order to preserve the spatial identity of each NIRS channel, subject-specific differences in NIRS array registration must be considered. Using high-density diffuse optical tomography (HD-DOT), we have demonstrated the inter-subject variability of the same HD-DOT array applied to ten participants recorded in the resting state. We have also compared three-dimensional image reconstruction results obtained using subject-specific positioning information to those obtained using generic optode locations. To mitigate the error introduced by using generic information for all participants, photogrammetry was used to identify specific optode locations per-participant. The present work demonstrates the large variation between subjects in terms of which cortical parcels are sampled by equivalent channels in the HD-DOT array. In particular, motor cortex recordings suffered from the largest optode localization errors, with a median localization error of 27.4 mm between generic and subject-specific optodes, leading to large differences in parcel sensitivity. These results illustrate the importance of collecting subject-specific optode locations for all wearable NIRS experiments, in order to perform accurate group-level analysis using cortical parcellation.

2.
J Cogn Neurosci ; 35(11): 1760-1772, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677062

RESUMO

Syllables are an essential building block of speech. We recently showed that tactile stimuli linked to the perceptual centers of syllables in continuous speech can improve speech comprehension. The rate of syllables lies in the theta frequency range, between 4 and 8 Hz, and the behavioral effect appears linked to multisensory integration in this frequency band. Because this neural activity may be oscillatory, we hypothesized that a behavioral effect may also occur not only while but also after this activity has been evoked or entrained through vibrotactile pulses. Here, we show that audiotactile integration regarding the perception of single syllables, both on the neural and on the behavioral level, is consistent with this hypothesis. We first stimulated participants with a series of vibrotactile pulses and then presented them with a syllable in background noise. We show that, at a delay of 200 msec after the last vibrotactile pulse, audiotactile integration still occurred in the theta band and syllable discrimination was enhanced. Moreover, the dependence of both the neural multisensory integration as well as of the behavioral discrimination on the delay of the audio signal with respect to the last tactile pulse was consistent with a damped oscillation. In addition, the multisensory gain is correlated with the syllable discrimination score. Our results therefore evidence the role of the theta band in audiotactile integration and provide evidence that these effects may involve oscillatory activity that still persists after the tactile stimulation.


Assuntos
Percepção da Fala , Humanos , Estimulação Acústica/métodos , Percepção da Fala/fisiologia , Fala/fisiologia , Tato/fisiologia , Ruído
3.
Ageing Res Rev ; 90: 101992, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356550

RESUMO

This systematic review aimed to evaluate previous studies which used near-infrared spectroscopy (NIRS) in dementia given its suitability as a diagnostic and investigative tool in this population. From 800 identified records which used NIRS in dementia and prodromal stages, 88 studies were evaluated which employed a range of tasks testing memory (29), word retrieval (24), motor (8) and visuo-spatial function (4), and which explored the resting state (32). Across these domains, dementia exhibited blunted haemodynamic responses, often localised to frontal regions of interest, and a lack of task-appropriate frontal lateralisation. Prodromal stages, such as mild cognitive impairment, revealed mixed results. Reduced cognitive performance accompanied by either diminished functional responses or hyperactivity was identified, the latter suggesting a compensatory response not present at the dementia stage. Despite clear evidence of alterations in brain oxygenation in dementia and prodromal stages, a consensus as to the nature of these changes is difficult to reach. This is likely partially due to the lack of standardisation in optical techniques and processing methods for the application of NIRS to dementia. Further studies are required exploring more naturalistic settings and a wider range of dementia subtypes.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Espectroscopia de Luz Próxima ao Infravermelho , Sintomas Prodrômicos , Encéfalo , Disfunção Cognitiva/diagnóstico
4.
Neurophotonics ; 10(2): 023514, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36788803

RESUMO

Significance: Dementia presents a global healthcare crisis, and neuroimaging is the main method for developing effective diagnoses and treatments. Yet currently, there is a lack of sensitive, portable, and low-cost neuroimaging tools. As dementia is associated with vascular and metabolic dysfunction, near-infrared spectroscopy (NIRS) has the potential to fill this gap. Aim: This future perspective aims to briefly review the use of NIRS in dementia to date and identify the challenges involved in realizing the full impact of NIRS for dementia research, including device development, study design, and data analysis approaches. Approach: We briefly appraised the current literature to assess the challenges, giving a critical analysis of the methods used. To assess the sensitivity of different NIRS device configurations to the brain with atrophy (as is common in most forms of dementia), we performed an optical modeling analysis to compare their cortical sensitivity. Results: The first NIRS dementia study was published in 1996, and the number of studies has increased over time. In general, these studies identified diminished hemodynamic responses in the frontal lobe and altered functional connectivity in dementia. Our analysis showed that traditional (low-density) NIRS arrays are sensitive to the brain with atrophy (although we see a mean decrease of 22% in the relative brain sensitivity with respect to the healthy brain), but there is a significant improvement (a factor of 50 sensitivity increase) with high-density arrays. Conclusions: NIRS has a bright future in dementia research. Advances in technology - high-density devices and intelligent data analysis-will allow new, naturalistic task designs that may have more clinical relevance and increased reproducibility for longitudinal studies. The portable and low-cost nature of NIRS provides the potential for use in clinical and screening tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...