Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954478

RESUMO

Cystic fibrosis (CF) results from mutations in the CFTR anion channel, ultimately leading to diminished transepithelial anion secretion and mucociliary clearance. CFTR correctors are therapeutics that restore the folding/trafficking of mutated CFTR to the plasma membrane. The BKCa potassium channel is also critical for maintaining lung ASL volume. Here, we show the CFTR corrector, VX-445 (Elexacaftor), a component of Trikafta, induces K+ secretion across WT and F508del CFTR primary human bronchial epithelial cells (HBEs), which was entirely inhibited by the BKCa antagonist paxilline. Similar results were observed with VX-121 - a corrector under clinical evaluation. Whole-cell patch-clamp recordings confirmed potentiated channel activity from CFTR correctors on the BKCa α-subunit, and excised patch-clamp recordings demonstrated a significant increase in open probability. In mesenteric artery, VX-445 induced a paxilline-sensitive vasorelaxation of preconstricted arteries. VX-445 also reduced action potential firing frequency in primary hippocampal and cortical neurons. VX-445 effects were observed at low micomolar concentrations (1-10 µM) - within the range reported in plasma and tissues from CF patients. We raise the possibilities that CFTR correctors gain additional clinical benefit by activation of BKCa in the lung, yet may lead to adverse events through BKCa activation, elsewhere.

2.
Sci Rep ; 14(1): 12833, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834809

RESUMO

Breast Cancer is the most common cancer among women globally. Despite significant improvements in overall survival, many tumours are refractory to therapy and so novel approaches are required to improve patient outcomes. We have evaluated patient-derived explants (PDEs) as a novel preclinical platform for breast cancer (BC) and implemented cutting-edge digital pathology and multi-immunofluorescent approaches for investigating biomarker changes in both tumour and stromal areas at endpoint. Short-term culture of intact fragments of BCs as PDEs retained an intact immune microenvironment, and tumour architecture was augmented by the inclusion of autologous serum in the culture media. Cell death/proliferation responses to FET chemotherapy in BC-PDEs correlated significantly with BC patient progression-free survival (p = 0.012 and p = 0.0041, respectively) and cell death responses to the HER2 antibody therapy trastuzumab correlated significantly with HER2 status (p = 0.018). These studies show that the PDE platform combined with digital pathology is a robust preclinical approach for informing clinical responses to chemotherapy and antibody-directed therapies in breast cancer. Furthermore, since BC-PDEs retain an intact tumour architecture over the short-term, they facilitate the preclinical testing of anti-cancer agents targeting the tumour microenvironment.


Assuntos
Neoplasias da Mama , Trastuzumab , Microambiente Tumoral , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Feminino , Microambiente Tumoral/efeitos dos fármacos , Trastuzumab/uso terapêutico , Trastuzumab/farmacologia , Receptor ErbB-2/metabolismo , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia
3.
Am J Physiol Cell Physiol ; 326(1): C282-C293, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047299

RESUMO

A key regulator of blood pressure homeostasis is the steroid hormone aldosterone, which is released as the final signaling hormone of the renin-angiotensin-aldosterone-signaling (RAAS) system. Aldosterone increases sodium (Na+) reabsorption in the kidney distal nephron to regulate blood volume. Unregulated RAAS signaling can lead to hypertension and cardiovascular disease. The serum and glucocorticoid kinase (SGK1) coordinates much of the Na+ reabsorption in the cortical collecting duct (CCD) tubular epithelial cells. We previously demonstrated that aldosterone alters the expression of microRNAs (miRs) in CCD principal cells. The aldosterone-regulated miRs can modulate Na+ transport and the cellular response to aldosterone signaling. However, the sex-specific regulation of miRs by aldosterone in the kidney distal nephron has not been explored. In this study, we report that miR-19, part of the miR-17-92 cluster, is upregulated in female mouse CCD cells in response to aldosterone activation. Mir-19 binding to the 3'-untranslated region of SGK1 was confirmed using a dual-luciferase reporter assay. Increasing miR-19 expression in CCD cells decreased SGK1 message and protein expression. Removal of this cluster using a nephron-specific, inducible knockout mouse model increased SGK1 expression in female mouse CCD cells. The miR-19-induced decrease in SGK1 protein expression reduced the response to aldosterone stimulation and may account for sex-specific differences in aldosterone signaling. By examining evolution of the miR-17-92 cluster, phylogenetic sequence analysis indicated that this cluster arose at the same time that other Na+-sparing and salt regulatory proteins, specifically SGK1, first emerged, indicating a conserved role for these miRs in kidney function of salt and water homeostasis.NEW & NOTEWORTHY Expression of the microRNA-17-92 cluster is upregulated by aldosterone in mouse cortical collecting duct principal cells, exclusively in female mice. MiR-19 in this cluster targets the serum and glucocorticoid kinase (SGK1) to downregulate both mRNA and protein expression, resulting in a decrease in sodium transport across epithelial cells of the collecting duct. The miR-17-92 cluster is evolutionarily conserved and may act as a novel feedback regulator for aldosterone signaling in females.


Assuntos
MicroRNAs , Feminino , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Aldosterona/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Glucocorticoides , Filogenia , Rim/metabolismo , Sódio/metabolismo , Canais Epiteliais de Sódio/metabolismo
4.
Am J Physiol Cell Physiol ; 322(3): C338-C353, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044858

RESUMO

The small conductance calcium-activated potassium channel (KCa2.3) has long been recognized for its role in mediating vasorelaxation through the endothelium-derived hyperpolarization (EDH) response. Histone deacetylases (HDACs) have been implicated as potential modulators of blood pressure and histone deacetylase inhibitors (HDACi) are being explored as therapeutics for hypertension. Herein, we show that HDACi increase KCa2.3 expression when heterologously expressed in HEK cells and endogenously expressed in primary cultures of human umbilical vein endothelial cells (HUVECs) and human intestinal microvascular endothelial cells (HIMECs). When primary endothelial cells were exposed to HDACi, KCa2.3 transcripts, subunits, and functional current are increased. Quantitative RT-PCR (qPCR) demonstrated increased KCa2.3 mRNA following HDACi, confirming transcriptional regulation of KCa2.3 by HDACs. By using pharmacological agents selective for different classes of HDACs, we discriminated between cytoplasmic and epigenetic modulation of KCa2.3. Biochemical analysis revealed an association between the cytoplasmic HDAC6 and KCa2.3 in immunoprecipitation studies. Specifically inhibiting HDAC6 increases expression of KCa2.3. In addition to increasing the expression of KCa2.3, we show that nonspecific inhibition of HDACs causes an increase in the expression of the molecular chaperone Hsp70 in endothelial cells. When Hsp70 is inhibited in the presence of HDACi, the magnitude of the increase in KCa2.3 expression is diminished. Finally, we show a slower rate of endocytosis of KCa2.3 as a result of exposure of primary endothelial cells to HDACi. These data provide the first demonstrated approach to increase KCa2.3 channel number in endothelial cells and may partially account for the mechanism by which HDACi induce vasorelaxation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Intestinos/irrigação sanguínea , Microvasos/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Endocitose , Células Endoteliais/enzimologia , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Desacetilase 6 de Histona/metabolismo , Humanos , Potenciais da Membrana , Microvasos/enzimologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Regulação para Cima , Vasodilatação
5.
J Vis Exp ; (168)2021 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-33616105

RESUMO

An understanding of drug resistance and the development of novel strategies to sensitize highly resistant cancers rely on the availability of suitable preclinical models that can accurately predict patient responses. One of the disadvantages of existing preclinical models is the inability to contextually preserve the human tumor microenvironment (TME) and accurately represent intratumoral heterogeneity, thus limiting the clinical translation of data. By contrast, by representing the culture of live fragments of human tumors, the patient-derived explant (PDE) platform allows drug responses to be examined in a three-dimensional (3D) context that mirrors the pathological and architectural features of the original tumors as closely as possible. Previous reports with PDEs have documented the ability of the platform to distinguish chemosensitive from chemoresistant tumors, and it has been shown that this segregation is predictive of patient responses to the same chemotherapies. Simultaneously, PDEs allow the opportunity to interrogate molecular, genetic, and histological features of tumors that predict drug responses, thereby identifying biomarkers for patient stratification as well as novel interventional approaches to sensitize resistant tumors. This paper reports PDE methodology in detail, from collection of patient samples through to endpoint analysis. It provides a detailed description of explant derivation and culture methods, highlighting bespoke conditions for particular tumors, where appropriate. For endpoint analysis, there is a focus on multiplexed immunofluorescence and multispectral imaging for the spatial profiling of key biomarkers within both tumoral and stromal regions. By combining these methods, it is possible to generate quantitative and qualitative drug response data that can be related to various clinicopathological parameters and thus potentially be used for biomarker identification.


Assuntos
Neoplasias/patologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imunofluorescência , Humanos , Inclusão em Parafina , Coloração e Rotulagem , Fixação de Tecidos
6.
Mol Cell Endocrinol ; 521: 111115, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33301840

RESUMO

The final steps in the Renin-Angiotensin-Aldosterone signaling System (RAAS) involve binding of the corticosteroid hormone, aldosterone to its mineralocorticoid receptor (MR). The bound MR interacts with response elements to induce or repress the transcription of aldosterone-regulated genes. Along with the classic genomic targets of aldosterone that alter mRNA and protein expression, aldosterone also regulates the expression of non-coding RNAs (ncRNAs). Short ncRNAs termed microRNAs (miRs) have been shown to play a role in transducing aldosterone's actions via MR signaling. The role of miRs in homeostatic regulation of aldosterone signaling, and the potential for aldosterone-regulated miRs to act as feedback regulators of MR have been recently reported. In this review, the role of miRs in RAAS signaling and feedback regulation of MR in kidney epithelial cells will be discussed.


Assuntos
Aldosterona/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , RNA não Traduzido/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais/genética , Animais , Homeostase , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Sistema Renina-Angiotensina , Transdução de Sinais/fisiologia
7.
FASEB J ; 34(9): 11714-11728, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652691

RESUMO

The final steps in the Renin-Angiotensin-Aldosterone signaling System (RAAS) involve binding of the corticosteroid hormone, aldosterone to its mineralocorticoid receptor (MR). The bound MR interacts with response elements to induce or repress the transcription of aldosterone-regulated genes. A well characterized aldosterone-induced gene is the serum and glucocorticoid-induced kinase (SGK1), which acts downstream to increase sodium transport in distal kidney nephron epithelial cells. The role of microRNAs (miRs) induced by extended aldosterone stimulation in regulating MR and SGK1 has not been reported. In these studies, miRs predicted to bind to the 3'-UTR of mouse MR were profiled by qRT-PCR after aldosterone stimulation. The miR-466a/b/c/e family was upregulated in mouse kidney cortical collecting duct epithelial cells. A luciferase reporter assay confirmed miR-466 binding to both MR and SGK1 3'-UTRs. Inhibition of miR-466 increased MR and SGK1 mRNA and protein levels. Inhibiting miR-466b and preventing its upregulation after aldosterone stimulation increased amiloride-sensitive sodium transport and sensitivity to aldosterone stimulation. In vivo upregulation of miR-466 was confirmed in distal nephrons of mice on low Na+ diets. Repression of MR and SGK1 by aldosterone-induced miRs may represent a negative feedback loop that contributes to a form of aldosterone escape in vivo.


Assuntos
Aldosterona/farmacologia , Células Epiteliais/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Receptores de Mineralocorticoides/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Transporte de Íons/efeitos dos fármacos , Túbulos Renais Coletores/citologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sódio/metabolismo
8.
Cell Death Dis ; 10(12): 912, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801952

RESUMO

Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer worldwide, with overall survival of less than 50%. Current therapeutic strategies involving a combination of surgery, radiation, and/or chemotherapy are associated with debilitating side effects, highlighting the need for more specific and efficacious therapies. Inhibitors of BCL-2 family proteins (BH3 mimetics) are under investigation or in clinical practice for several hematological malignancies and show promise in solid tumors. In order to explore the therapeutic potential of BH3 mimetics in the treatment of SCCHN, we assessed the expression levels of BCL-2, BCL-XL, and MCL-1 via Western blots and immunohistochemistry, in cell lines, primary cells derived from SCCHN patients and in tissue microarrays containing tumor tissue from a cohort of 191 SCCHN patients. All preclinical models exhibited moderate to high levels of BCL-XL and MCL-1, with little or no BCL-2. Although expression levels of BCL-XL and MCL-1 did not correlate with patient outcome, a combination of BH3 mimetics to target these proteins resulted in decreased clonogenic potential and enhanced apoptosis in all preclinical models, including tumor tissue resected from patients, as well as a reduction of tumor volume in a zebrafish xenograft model of SCCHN. Our results show that SCCHN is dependent on both BCL-XL and MCL-1 for apoptosis evasion and combination therapy targeting both proteins may offer significant therapeutic benefits in this disease.


Assuntos
Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
9.
Am J Physiol Renal Physiol ; 316(5): F993-F1005, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30838872

RESUMO

We have previously demonstrated that loss of miR-17~92 in nephron progenitors in a mouse model results in renal hypodysplasia and chronic kidney disease. Clinically, decreased congenital nephron endowment because of renal hypodysplasia is associated with an increased risk of hypertension and chronic kidney disease, and this is at least partly dependent on the self-renewal of nephron progenitors. Here, we present evidence for a novel molecular mechanism regulating the self-renewal of nephron progenitors and congenital nephron endowment by the highly conserved miR-17~92 cluster. Whole transcriptome sequencing revealed that nephron progenitors lacking this cluster demonstrated increased Cftr expression. We showed that one member of the cluster, miR-19b, is sufficient to repress Cftr expression in vitro and that perturbation of Cftr activity in nephron progenitors results in impaired proliferation. Together, these data suggest that miR-19b regulates Cftr expression in nephron progenitors, with this interaction playing a role in appropriate nephron progenitor self-renewal during kidney development to generate normal nephron endowment.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , MicroRNAs/metabolismo , Néfrons/metabolismo , Células-Tronco/metabolismo , Animais , Movimento Celular , Proliferação de Células , Autorrenovação Celular , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Néfrons/embriologia , Organogênese , Transdução de Sinais
10.
Vitam Horm ; 109: 69-103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30678867

RESUMO

The mineralocorticoid hormone aldosterone is released by the adrenal glands in a homeostatic mechanism to regulate blood volume. Several cues elicit aldosterone release, and the long-term action of the hormone is to restore blood pressure and/or increase the retrieval of sodium from filtered plasma in the kidney. While the signaling cascade that results in aldosterone release is well studied, the impact of this hormone on tissues and cells in various organ systems is pleotropic. Emerging evidence indicates aldosterone may alter non-coding RNAs (ncRNAs) to integrate the hormonal response, and these ncRNAs may contribute to the heterogeneity of signaling outcomes in aldosterone target tissues. The best studied of the ncRNAs in aldosterone action are the small ncRNAs, microRNAs. MicroRNA expression is regulated by aldosterone stimulation, and microRNAs are able to modulate protein expression at all steps in the renin-angiotensin-aldosterone-signaling system. The discovery and synthesis of microRNAs will be briefly covered followed by a discussion of the reciprocal role of aldosterone/microRNA regulation, including misregulation of microRNA signaling in aldosterone-linked disease states.


Assuntos
Aldosterona/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/fisiologia , Injúria Renal Aguda/metabolismo , Aldosterona/genética , Animais , Regulação da Expressão Gênica/fisiologia , MicroRNAs/genética
11.
Cell Death Differ ; 26(6): 1037-1047, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30185825

RESUMO

The impressive selectivity and efficacy of BH3 mimetics for treating cancer has largely been limited to BCL-2 dependent hematological malignancies. Most solid tumors depend on other anti-apoptotic proteins, including MCL-1, for survival. The recent description of S63845 as the first specific and potent MCL-1 inhibitor represents an important therapeutic advance, since MCL-1 is not targeted by the currently available BH3 mimetics, Navitoclax or Venetoclax, and is commonly associated with chemoresistance. In this study, we confirm a high binding affinity and selectivity of S63845 to induce apoptosis in MCL-1-dependent cancer cell lines. Furthermore, S63845 synergizes with other BH3 mimetics to induce apoptosis in cell lines derived from both hematological and solid tumors. Although the anti-apoptotic BCL-2 family members in these cell lines interact with a spectrum of pro-apoptotic BH3-only proteins to regulate apoptosis, these interactions alone do not explain the relative sensitivities of these cell lines to BH3 mimetic-induced apoptosis. These findings necessitated further investigation into the requirement of BH3-only proteins in BH3 mimetic-mediated apoptosis. Concurrent inhibition of BCL-XL and MCL-1 by BH3 mimetics in colorectal HCT116 cells induced apoptosis in a BAX- but not BAK-dependent manner. Remarkably this apoptosis was independent of all known BH3-only proteins. Although BH3-only proteins were required for apoptosis induced as a result of BCL-XL inhibition, this requirement was overcome when both BCL-XL and MCL-1 were inhibited, implicating distinct mechanisms by which different anti-apoptotic BCL-2 family members may regulate apoptosis in cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Pirimidinas/farmacologia , Tiofenos/farmacologia , Proteína bcl-X/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Relação Estrutura-Atividade , Proteína bcl-X/metabolismo
12.
Sci Rep ; 8(1): 16029, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375416

RESUMO

The molecular events driving specification of the kidney have been well characterized. However, how the initial kidney field size is established, patterned, and proportioned is not well characterized. Lhx1 is a transcription factor expressed in pronephric progenitors and is required for specification of the kidney, but few Lhx1 interacting proteins or downstream targets have been identified. By tandem-affinity purification, we isolated FRY like transcriptional coactivator (Fryl), one of two paralogous genes, fryl and furry (fry), have been described in vertebrates. Both proteins were found to interact with the Ldb1-Lhx1 complex, but our studies focused on Lhx1/Fry functional roles, as they are expressed in overlapping domains. We found that Xenopus embryos depleted of fry exhibit loss of pronephric mesoderm, phenocopying the Lhx1-depleted animals. In addition, we demonstrated a synergism between Fry and Lhx1, identified candidate microRNAs regulated by the pair, and confirmed these microRNA clusters influence specification of the kidney. Therefore, our data shows that a constitutively-active Ldb1-Lhx1 complex interacts with a broadly expressed microRNA repressor, Fry, to establish the kidney field.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Rim/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , MicroRNAs/genética , Organogênese/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Padronização Corporal/genética , Linhagem Celular , Cromatografia Líquida , Ordem dos Genes , Vetores Genéticos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Espectrometria de Massas em Tandem , Xenopus laevis
13.
Curr Opin Nephrol Hypertens ; 27(5): 390-394, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30074910

RESUMO

PURPOSE OF REVIEW: The review describes studies investigating the role of microRNAs in the signaling pathway of the mineralocorticoid hormone, aldosterone. RECENT FINDINGS: Emerging evidence indicates that aldosterone alters the expression of microRNAs in target tissues thereby modulating the expression of key regulatory proteins. SUMMARY: The mineralocorticoid hormone aldosterone is released by the adrenal glands in a homeostatic mechanism to regulate blood volume. The long-term renal action of aldosterone is to increase the retrieval of sodium from filtered plasma to restore blood pressure. Emerging evidence indicates aldosterone may alter noncoding RNAs (ncRNAs) to integrate this hormonal response in target tissue. Expression of the best characterized small ncRNAs, microRNAs, is regulated by aldosterone stimulation. MicroRNAs modulate protein expression at all steps in the renin-angiotensin-aldosterone-signaling (RAAS) system. In addition to acting as a rheostat to fine-tune protein levels in aldosterone-responsive cells, there is evidence that microRNAs down-regulate components of the signaling cascade as a feedback mechanism. The role of microRNAs is, therefore, as signal integrator, and damper in aldosterone signaling, which has implications in understating the RAAS system from both a physiological and pathophysiological perspective. Recent evidence for microRNA's role in RAAS signaling will be discussed.


Assuntos
Glândulas Suprarrenais/metabolismo , Aldosterona/metabolismo , Rim/metabolismo , MicroRNAs/metabolismo , Sistema Renina-Angiotensina/fisiologia , Sódio/metabolismo , Animais , Pressão Sanguínea/fisiologia , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais
14.
15.
J Biol Chem ; 292(10): 4152-4163, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28154191

RESUMO

The epithelial sodium channel (ENaC) has an important role in regulating extracellular fluid volume and blood pressure, as well as airway surface liquid volume and mucociliary clearance. ENaC is a trimer of three homologous subunits (α, ß, and γ). We previously reported that cytoplasmic residues on the ß (ßCys-43 and ßCys-557) and γ (γCys-33 and γCys-41) subunits are palmitoylated. Mutation of Cys that blocked ENaC palmitoylation also reduced channel open probability. Furthermore, γ subunit palmitoylation had a dominant role over ß subunit palmitoylation in regulating ENaC. To determine which palmitoyltransferases (termed DHHCs) regulate the channel, mouse ENaCs were co-expressed in Xenopus oocytes with each of the 23 mouse DHHCs. ENaC activity was significantly increased by DHHCs 1, 2, 3, 7, and 14. ENaC activation by DHHCs was lost when γ subunit palmitoylation sites were mutated, whereas DHHCs 1, 2, and 14 still activated ENaC lacking ß subunit palmitoylation sites. ß subunit palmitoylation was increased by ENaC co-expression with DHHC 7. Both wild type ENaC and channels lacking ß and γ palmitoylation sites co-immunoprecipitated with the five activating DHHCs, suggesting that ENaC forms a complex with multiple DHHCs. RT-PCR revealed that transcripts for the five activating DHHCs were present in cultured mCCDcl1 cells, and DHHC 3 was expressed in aquaporin 2-positive principal cells of mouse aldosterone-sensitive distal nephron where ENaC is localized. Treatment of polarized mCCDcl1 cells with a general inhibitor of palmitoylation reduced ENaC-mediated Na+ currents within minutes. Our results indicate that specific DHHCs have a role in regulating ENaC.


Assuntos
Aciltransferases/metabolismo , Canais Epiteliais de Sódio/metabolismo , Ativação do Canal Iônico/fisiologia , Rim/metabolismo , Processamento de Proteína Pós-Traducional , Aciltransferases/genética , Animais , Células Cultivadas , Citoplasma/metabolismo , Canais Epiteliais de Sódio/genética , Feminino , Células HEK293 , Humanos , Imunoprecipitação , Transporte de Íons , Rim/citologia , Lipoilação , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/citologia , Oócitos/metabolismo , Subunidades Proteicas , Serina C-Palmitoiltransferase/metabolismo , Sódio/metabolismo , Xenopus laevis
16.
Cell Death Dis ; 8(1): e2552, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079887

RESUMO

The concept of using BH3 mimetics as anticancer agents has been substantiated by the efficacy of selective drugs, such as Navitoclax and Venetoclax, in treating BCL-2-dependent haematological malignancies. However, most solid tumours depend on MCL-1 for survival, which is highly amplified in multiple cancers and a major factor determining chemoresistance. Most MCL-1 inhibitors that have been generated so far, while demonstrating early promise in vitro, fail to exhibit specificity and potency in a cellular context. To address the lack of standardised assays for benchmarking the in vitro binding of putative inhibitors before analysis of their cellular effects, we developed a rapid differential scanning fluorimetry (DSF)-based assay, and used it to screen a panel of BH3 mimetics. We next contrasted their binding signatures with their ability to induce apoptosis in a MCL-1 dependent cell line. Of all the MCL-1 inhibitors tested, only A-1210477 induced rapid, concentration-dependent apoptosis, which strongly correlated with a thermal protective effect on MCL-1 in the DSF assay. In cells that depend on both MCL-1 and BCL-XL, A-1210477 exhibited marked synergy with A-1331852, a BCL-XL specific inhibitor, to induce cell death. Despite this selectivity and potency, A-1210477 induced profound structural changes in the mitochondrial network in several cell lines that were not phenocopied following MCL-1 RNA interference or transcriptional repression, suggesting that A-1210477 induces mitochondrial fragmentation in an MCL-1-independent manner. However, A-1210477-induced mitochondrial fragmentation was dependent upon DRP-1, and silencing expression levels of DRP-1 diminished not just mitochondrial fragmentation but also BH3 mimetic-mediated apoptosis. These findings provide new insights into MCL-1 ligands, and the interplay between DRP-1 and the anti-apoptotic BCL-2 family members in the regulation of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Quinases Associadas com Morte Celular/genética , Neoplasias Hematológicas/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/química , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Indóis/administração & dosagem , Indóis/química , Isoquinolinas/administração & dosagem , Isoquinolinas/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/administração & dosagem , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/administração & dosagem , Sulfonamidas/química
17.
J Cell Physiol ; 232(6): 1306-1317, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27636893

RESUMO

The epithelial sodium channel (ENaC) is expressed in the epithelial cells of the distal convoluted tubules, connecting tubules, and cortical collecting duct (CCD) in the kidney nephron. Under the regulation of the steroid hormone aldosterone, ENaC is a major determinant of sodium (Na+ ) and water balance. The ability of aldosterone to regulate microRNAs (miRs) in the kidney has recently been realized, but the role of miRs in Na+ regulation has not been well established. Here we demonstrate that expression of a miR cluster mmu-miR-23-24-27, is upregulated in the CCD by aldosterone stimulation both in vitro and in vivo. Increasing the expression of these miRs increased Na+ transport in the absence of aldosterone stimulation. Potential miR targets were evaluated and miR-27a/b was verified to bind to the 3'-untranslated region of intersectin-2, a multi-domain protein expressed in the distal kidney nephron and involved in the regulation of membrane trafficking. Expression of Itsn2 mRNA and protein was decreased after aldosterone stimulation. Depletion of Itsn2 expression, mimicking aldosterone regulation, increased ENaC-mediated Na+ transport, while Itsn2 overexpression reduced ENaC's function. These findings reinforce a role for miRs in aldosterone regulation of Na+ transport, and implicate miR-27 in aldosterone's action via a novel target. J. Cell. Physiol. 232: 1306-1317, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Aldosterona/farmacologia , MicroRNAs/metabolismo , Néfrons/metabolismo , Sódio/metabolismo , Regulação para Cima/efeitos dos fármacos , Regiões 3' não Traduzidas/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Néfrons/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease III/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
J Biol Chem ; 292(1): 375-385, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27895120

RESUMO

The epithelial sodium channel (ENaC) is the limiting entry point for Na+ reabsorption in the distal kidney nephron and is regulated by numerous hormones, including the mineralocorticoid hormone aldosterone. Previously we identified ankyrin G (AnkG), a cytoskeletal protein involved in vesicular transport, as a novel aldosterone-induced protein that can alter Na+ transport in mouse cortical collecting duct cells. However, the mechanisms underlying AnkG regulation of Na+ transport were unknown. Here we report that AnkG expression directly regulates Na+ transport by altering ENaC activity in the apical membrane. Increasing AnkG expression increased ENaC activity while depleting AnkG reduced ENaC-mediated Na+ transport. These changes were due to a change in ENaC directly rather than through alterations to the Na+ driving force created by Na+/K+-ATPase. Using a constitutively open mutant of ENaC, we demonstrate that the augmentation of Na+ transport is caused predominantly by increasing the number of ENaCs at the surface. To determine the mechanism of AnkG action on ENaC surface number, changes in rates of internalization, recycling, and membrane delivery were investigated. AnkG did not alter ENaC delivery to the membrane from biosynthetic pathways or removal by endocytosis. However, AnkG did alter ENaC insertion from constitutive recycling pathways. These findings provide a mechanism to account for the role of AnkG in the regulation of Na+ transport in the distal kidney nephron.


Assuntos
Anquirinas/metabolismo , Membrana Celular/metabolismo , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Endocitose/fisiologia , Transporte de Íons , Camundongos , Ratos
19.
PLoS One ; 11(5): e0155006, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27159616

RESUMO

The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PCIC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which will support activation of the low Ca2+-binding affinity BK channel to promote BK-mediated K+ secretion.


Assuntos
Túbulos Renais Coletores/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL
20.
Br J Cancer ; 114(6): 638-41, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26954718

RESUMO

BACKGROUND: Anti-apoptotic BCL-2 family members antagonise apoptosis by sequestering their pro-apoptotic counterparts. The balance between the different BCL-2 family members forms the basis of BH3 profiling, a peptide-based technique used to predict chemosensitivity of cancer cells. Recent identification of cell-permeable, selective inhibitors of BCL-2, BCL-XL and MCL-1, further facilitates the determination of the BCL-2 family dependency of cancer cells. METHODS: We use BH3 profiling in combination with cell death analyses using a chemical inhibitor toolkit to assess chemosensitivity of cancer cells. RESULTS: Both BH3 profiling and the inhibitor toolkit effectively predict chemosensitivity of cells addicted to a single anti-apoptotic protein but a combination of both techniques is more instructive when cell survival depends on more than one anti-apoptotic protein. CONCLUSIONS: The inhibitor toolkit provides a rapid, inexpensive and simple means to assess the chemosensitivity of tumour cells and in conjunction with BH3 profiling offers much potential in personalising cancer therapy.


Assuntos
Materiais Biomiméticos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fragmentos de Peptídeos/análise , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas/análise , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzotiazóis/farmacologia , Materiais Biomiméticos/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Humanos , Isoquinolinas/farmacologia , Dados de Sequência Molecular , Neoplasias/patologia , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...