Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 27(8): 428-439, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272689

RESUMO

Methyl-lysine (Kme) reader domains are prevalent in chromatin regulatory proteins which bind post-translational modification sites to recruit repressive and activating factors; therefore, these proteins play crucial roles in cellular signaling and epigenetic regulation. Proteins that contain Kme domains are implicated in various diseases, including cancer, making them attractive therapeutic targets for drug and chemical probe discovery. Herein, we report on expanding the utility of a previously reported, Kme-focused DNA-encoded library (DEL), UNCDEL003, as a screening tool for hit discovery through the specific targeting of Kme reader proteins. As an efficient method for library generation, focused DELs are designed based on structural and functional features of a specific class of proteins with the intent of novel hit discovery. To broadly assess the applicability of our library, UNCDEL003 was screened against five diverse Kme reader protein domains (53BP1 TTD, KDM7B JmjC-PHD, CDYL2 CD, CBX2 CD, and LEDGF PWWP) with varying structures and functions. From these screening efforts, we identified hit compounds which contain unique chemical scaffolds distinct from previously reported ligands. The selected hit compounds were synthesized off-DNA and confirmed using primary and secondary assays and assessed for binding selectivity. Hit compounds from these efforts can serve as starting points for additional development and optimization into chemical probes to aid in further understanding the functionality of these therapeutically relevant proteins.


Assuntos
Epigênese Genética , Lisina , DNA/genética
2.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769472

RESUMO

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This modification typically causes proteins to associate with the membrane and allows them to participate in signaling pathways. In the canonical understanding of FTase, the isoprenoids are attached to the cysteine residue of a four-amino-acid CaaX box sequence. However, recent work has shown that five-amino-acid sequences can be recognized, including the pentapeptide CMIIM. This paper describes a new systematic approach to discover novel peptide substrates for FTase by combining the combinatorial power of solid-phase peptide synthesis (SPPS) with the ease of matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). The workflow consists of synthesizing focused libraries containing 10-20 sequences obtained by randomizing a synthetic peptide at a single position. Incubation of the library with FTase and farnesyl pyrophosphate (FPP) followed by mass spectrometric analysis allows the enzymatic products to be clearly resolved from starting peptides due to the increase in mass that occurs upon farnesylation. Using this method, 30 hits were obtained from a series of libraries containing a total of 80 members. Eight of the above peptides were selected for further evaluation, reflecting a mixture that represented a sampling of diverse substrate space. Six of these sequences were found to be bona fide substrates for FTase, with several meeting or surpassing the in vitro efficiency of the benchmark sequence CMIIM. Experiments in yeast demonstrated that proteins bearing these sequences can be efficiently farnesylated within live cells. Additionally, a bioinformatics search showed that a variety of pentapeptide CaaaX sequences can be found in the mammalian genome, and several of these sequences display excellent farnesylation in vitro and in yeast cells, suggesting that the number of farnesylated proteins within mammalian cells may be larger than previously thought.


Assuntos
Farnesiltranstransferase/metabolismo , Prenilação de Proteína , Proteoma/análise , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Humanos , Biblioteca de Peptídeos , Fosfatos de Poli-Isoprenil/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteoma/metabolismo , Proteômica/métodos , Ratos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...