Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Death Differ ; 28(6): 1849-1864, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33462407

RESUMO

Keratinocyte cornification and epidermal barrier formation are tightly controlled processes, which require complete degradation of intracellular organelles, including removal of keratinocyte nuclei. Keratinocyte nuclear destruction requires Akt1-dependent phosphorylation and degradation of the nuclear lamina protein, Lamin A/C, essential for nuclear integrity. However, the molecular mechanisms that result in complete nuclear removal and their regulation are not well defined. Post-confluent cultures of rat epidermal keratinocytes (REKs) undergo spontaneous and complete differentiation, allowing visualisation and perturbation of the differentiation process in vitro. We demonstrate that there is dispersal of phosphorylated Lamin A/C to structures throughout the cytoplasm in differentiating keratinocytes. We show that the dispersal of phosphorylated Lamin A/C is Akt1-dependent and these structures are specific for the removal of Lamin A/C from the nuclear lamina; nuclear contents and Lamin B were not present in these structures. Immunoprecipitation identified a group of functionally related Akt1 target proteins involved in Lamin A/C dispersal, including actin, which forms cytoskeletal microfilaments, Arp3, required for actin filament nucleation, and Myh9, a component of myosin IIa, a molecular motor that can translocate along actin filaments. Disruption of actin filament polymerisation, nucleation or myosin IIa activity prevented formation and dispersal of cytoplasmic Lamin A/C structures. Live imaging of keratinocytes expressing fluorescently tagged nuclear proteins showed a nuclear volume reduction step taking less than 40 min precedes final nuclear destruction. Preventing Akt1-dependent Lamin A/C phosphorylation and disrupting cytoskeletal Akt1-associated proteins prevented nuclear volume reduction. We propose keratinocyte nuclear destruction and differentiation requires myosin II activity and the actin cytoskeleton for two intermediate processes: Lamin A/C dispersal and rapid nuclear volume reduction.


Assuntos
Actomiosina/metabolismo , Lâmina Nuclear/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular , Humanos
2.
Hum Mol Genet ; 29(2): 216-227, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31813995

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine tract in the huntingtin (HTT) protein. Mutant HTT (mHTT) toxicity is caused by its aggregation/oligomerization. The striatum is the most vulnerable region, although all brain regions undergo neuronal degeneration in the disease. Here we show that the levels of Bim, a BH3-only protein, are significantly increased in HD human post-mortem and HD mouse striata, correlating with neuronal death. Bim reduction ameliorates mHTT neurotoxicity in HD cells. In the HD mouse model, heterozygous Bim knockout significantly mitigates mHTT accumulation and neuronal death, ameliorating disease-associated phenotypes and lifespan. Therefore, Bim could contribute to the progression of HD.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Corpo Estriado/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Neurônios/patologia , Idoso , Animais , Proteína 11 Semelhante a Bcl-2/genética , Corpo Estriado/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Técnicas de Inativação de Genes , Heterozigoto , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/mortalidade , Doença de Huntington/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios/metabolismo , Fenótipo , Agregados Proteicos/genética , RNA Interferente Pequeno
3.
Nat Commun ; 10(1): 3759, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434890

RESUMO

Autophagy cargo recognition and clearance are essential for intracellular protein quality control. SQSTM1/p62 sequesters intracellular aberrant proteins and mediates cargo delivery for their selective autophagic degradation. The formation of p62 non-membrane-bound liquid compartments is critical for its function as a cargo receptor. The regulation of p62 phase separation/condensation has yet been poorly characterised. Using an unbiased yeast two-hybrid screening and complementary approaches, we found that DAXX physically interacts with p62. Cytoplasmic DAXX promotes p62 puncta formation. We further elucidate that DAXX drives p62 liquid phase condensation by inducing p62 oligomerisation. This effect promotes p62 recruitment of Keap1 and subsequent Nrf2-mediated stress response. The present study suggests a mechanism of p62 phase condensation by a protein interaction, and indicates that DAXX regulates redox homoeostasis, providing a mechanistic insight into the prosurvival function of DAXX.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoplasma/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagia/fisiologia , Linhagem Celular , Proteínas Correpressoras , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Camundongos , Chaperonas Moleculares , Proteínas Nucleares/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas
4.
Autophagy ; 13(10): 1797-1798, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28820297

RESUMO

Macroautophagy/autophagy comprises autophagosome synthesis and lysosomal degradation. It is well known that lysosomal defects cause toxicity to cells. However, it has not been investigated previously if cytotoxicity is conferred by autophagosome formation during lysosomal defect. Recently, we found that the formation of autophagosomes in such conditions also causes cytotoxicity, in addition to lysosomal defect insults. We revealed that a partial reduction in autophagosome synthesis was beneficial for cell survival in cells bearing the autophagosome formation-based toxicity. Our study suggests that production/accumulation of autophagosomes during lysosomal defect directly induces cellular toxicity, and this process may be implicated in the pathological conditions where lysosomes are defective.


Assuntos
Autofagossomos/fisiologia , Autofagia/fisiologia , Lisossomos/patologia , Biogênese de Organelas , Animais , Autofagia/genética , Morte Celular/genética , Sobrevivência Celular/genética , Técnicas de Silenciamento de Genes , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Proteínas Qa-SNARE/genética , Serina-Treonina Quinases TOR/genética
5.
J Biol Chem ; 292(33): 13599-13614, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673965

RESUMO

Autophagy comprises the processes of autophagosome synthesis and lysosomal degradation. In certain stress conditions, increased autophagosome synthesis may be associated with decreased lysosomal activity, which may result in reduced processing of the excessive autophagosomes by the rate-limiting lysosomal activity. Thus, the excessive autophagosomes in such situations may be largely unfused to lysosomes, and their formation/accumulation under these conditions is assumed to be futile for autophagy. The role of cytotoxicity in accumulating autophagosomes (representing synthesis of autophagosomes subsequently unfused to lysosomes) has not been investigated previously. Here, we found that accumulation of autophagosomes compromised cell viability, and this effect was alleviated by depletion of autophagosome machinery proteins. We tested whether reduction in autophagosome synthesis could affect cell viability in cell models expressing mutant huntingtin and α-synuclein, given that both of these proteins cause increased autophagosome biogenesis and compromised lysosomal activity. Importantly, partial depletion of autophagosome machinery proteins Atg16L1 and Beclin 1 significantly ameliorated cell death in these conditions. Our data suggest that production/accumulation of autophagosomes subsequently unfused to lysosomes (or accumulation of autophagosomes) directly induces cellular toxicity, and this process may be implicated in the pathogenesis of neurodegenerative diseases. Therefore, lowering the accumulation of autophagosomes may represent a therapeutic strategy for tackling such diseases.


Assuntos
Autofagossomos/metabolismo , Lisossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Qa-SNARE/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Autofagossomos/patologia , Autofagossomos/ultraestrutura , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/patologia , Lisossomos/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Neurônios/ultraestrutura , Proteínas Qa-SNARE/antagonistas & inibidores , Proteínas Qa-SNARE/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
6.
Oncotarget ; 7(5): 5157-75, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26814436

RESUMO

The PI-3 kinase (PI-3K)/mTOR pathway is critical for cell growth and proliferation. Strategies of antagonising this signaling have proven to be detrimental to cell survival. This observation, coupled with the fact many tumours show enhanced growth signaling, has caused dual inhibitors of PI-3K and mTOR to be implicated in cancer treatment, and have thus been studied across various tumour models. Since PI-3K (class-I)/mTOR pathway negatively regulates autophagy, dual inhibitors of PI-3K/mTOR are currently believed to be autophagy activators. However, our present data show that the dual PI-3K/mTOR inhibition (DKI) potently suppresses autophagic flux. We further confirm that inhibition of Vps34/PI3KC3, the class-III PI-3K, causes the blockade to autophagosome-lysosome fusion. Our data suggest that DKI induces cell death independently of apoptosis and necroptosis, whereas autophagy perturbation by DKI may contribute to cell death. Given that autophagy is critical in cellular homeostasis, our study not only clarifies the role of a dual PI-3K/mTOR inhibitor in autophagy, but also suggests that its autophagy inhibition needs to be considered if such an agent is used in cancer chemotherapy.


Assuntos
Apoptose/genética , Necrose/genética , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR/antagonistas & inibidores , Autofagia , Morte Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Transfecção
7.
Neurosci Bull ; 31(4): 382-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26077705

RESUMO

As post-mitotic cells with great energy demands, neurons depend upon the homeostatic and waste-recycling functions provided by autophagy. In addition, autophagy also promotes survival during periods of harsh stress and targets aggregate-prone proteins associated with neurodegeneration for degradation. Despite this, autophagy has also been controversially described as a mechanism of programmed cell death. Instances of autophagic cell death are typically associated with elevated numbers of cytoplasmic autophagosomes, which have been assumed to lead to excessive degradation of cellular components. Due to the high activity and reliance on autophagy in neurons, these cells may be particularly susceptible to autophagic death. In this review, we summarize and assess current evidence in support of autophagic cell death in neurons, as well as how the dysregulation of autophagy commonly seen in neurodegeneration can contribute to neuron loss. From here, we discuss potential treatment strategies relevant to such cell-death pathways.


Assuntos
Autofagia , Encéfalo/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/metabolismo , Sobrevivência Celular , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/fisiopatologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...