Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 357(2): 281-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26937021

RESUMO

Cytochrome P450 (CYP) 26A1 and 26B1 are heme-containing enzymes responsible for metabolizing all-trans retinoic acid (at-RA). No crystal structures have been solved, and therefore homology models that provide structural information are extremely valuable for the development of inhibitors of cytochrome P450 family 26 (CYP26). The objectives of this study were to use homology models of CYP26A1 and CYP26B1 to characterize substrate binding characteristics, to compare structural aspects of their active sites, and to support the role of CYP26 in the metabolism of xenobiotics. Each model was verified by dockingat-RA in the active site and comparing the results to known metabolic profiles ofat-RA. The models were then used to predict the metabolic sites of tazarotenic acid with results verified by in vitro metabolite identification experiments. The CYP26A1 and CYP26B1 homology models predicted that the benzothiopyranyl moiety of tazarotenic acid would be oriented toward the heme of each enzyme and suggested that tazarotenic acid would be a substrate of CYP26A1 and CYP26B1. Metabolite identification experiments indicated that CYP26A1 and CYP26B1 oxidatively metabolized tazarotenic acid on the predicted moiety, with in vitro rates of metabolite formation by CYP26A1 and CYP26B1 being the highest across a panel of enzymes. Molecular analysis of the active sites estimated the active-site volumes of CYP26A1 and CYP26B1 to be 918 Å(3)and 977 Å(3), respectively. Overall, the homology models presented herein describe the enzyme characteristics leading to the metabolism of tazarotenic acid by CYP26A1 and CYP26B1 and support a potential role for the CYP26 enzymes in the metabolism of xenobiotics.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Nicotínicos/metabolismo , Xenobióticos/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Preparações Farmacêuticas/metabolismo , Receptores do Ácido Retinoico/agonistas , Ácido Retinoico 4 Hidroxilase , Especificidade por Substrato , Tretinoína/metabolismo
2.
J Med Chem ; 59(6): 2579-95, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26918322

RESUMO

Cytochrome P450 CYP26 enzymes are responsible for all-trans-retinoic acid (atRA) clearance. Inhibition of CYP26 enzymes will increase endogenous atRA concentrations and is an attractive therapeutic target. However, the selectivity and potency of the existing atRA metabolism inhibitors toward CYP26A1 and CYP26B1 is unknown, and no selective CYP26A1 or CYP26B1 inhibitors have been developed. Here the synthesis and potent inhibitory activity of the first CYP26A1 selective inhibitors is reported. A series of nonazole CYP26A1 selective inhibitors was identified with low nM potency. The lead compound 3-{4-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1,3-dioxolan-2-yl] phenyl}4-propanoic acid (24) had 43-fold selectivity toward CYP26A1 with an IC50 of 340 nM. Compound 24 and its two structural analogues also inhibited atRA metabolism in HepG2 cells, resulting in increased potency of atRA toward RAR activation. The identified compounds have potential to become novel treatments aiming to elevate endogenous atRA concentrations and may be useful as cotreatment with atRA to combat therapy resistance.


Assuntos
Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Fígado/enzimologia , Algoritmos , Animais , Linhagem Celular Tumoral , Desenho de Fármacos , Resistência a Medicamentos , Indução Enzimática , Humanos , Isoenzimas/antagonistas & inibidores , Cinética , Fígado/efeitos dos fármacos , Ratos , Ácido Retinoico 4 Hidroxilase , Relação Estrutura-Atividade , Especificidade por Substrato , Tretinoína/metabolismo
3.
Curr Top Med Chem ; 13(12): 1402-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23688132

RESUMO

Retinoic acid (RA), the active metabolite of vitamin A, is an important endogenous signaling molecule regulating cell cycle and maintenance of epithelia. RA isomers are also used as drugs to treat various cancers and dermatological diseases. However, the therapeutic uses of RA isomers are limited due to side effects such as teratogenicity and resistance to treatment emerging mainly from autoinduction of RA metabolism. To improve the therapeutic usefulness of retinoids, RA metabolism blocking agents (RAMBAs) have been developed. These inhibitors generally target the cytochrome P450 (CYP) enzymes because RA clearance is predominantly mediated by P450s. Since the initial identification of inhibitors of RA metabolism, CYP26 enzymes have been characterized as the main enzymes responsible for RA clearance. This makes CYP26 enzymes an attractive target for the development of novel therapeutics for cancer and dermatological conditions. The basic principle of development of CYP26 inhibitors is that endogenous RA concentrations will be increased in the presence of a CYP26 inhibitor, thus, potentiating the activity of endogenous RA in a cell-type specific manner. This will reduce side effects compared to administration of RA and allow for more targeted therapy. In clinical trials, inhibitors of RA metabolism have been effective in treatment of psoriasis and other dermatological conditions as well as in some cancers. However, no CYP26 inhibitor has yet been approved for clinical use. This review summarizes the history of development of RAMBAs, the clinical and preclinical studies with the various structural series and the available knowledge of structure activity relationships of CYP26 inhibitors.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Xenobióticos/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Estrutura Molecular , Ácido Retinoico 4 Hidroxilase , Relação Estrutura-Atividade , Xenobióticos/química , Xenobióticos/uso terapêutico
4.
Mol Pharmacol ; 80(2): 228-39, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21521770

RESUMO

All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. atRA is also used as a drug, and synthetic atRA analogs and inhibitors of retinoic acid (RA) metabolism have been developed. The hepatic clearance of atRA is mediated primarily by CYP26A1, but design of CYP26A1 inhibitors is hindered by lack of information on CYP26A1 structure and structure-activity relationships of its ligands. The aim of this study was to identify the primary metabolites of atRA formed by CYP26A1 and to characterize the ligand selectivity and ligand interactions of CYP26A1. On the basis of high-resolution tandem mass spectrometry data, four metabolites formed from atRA by CYP26A1 were identified as 4-OH-RA, 4-oxo-RA, 16-OH-RA and 18-OH-RA. 9-cis-RA and 13-cis-RA were also substrates of CYP26A1. Forty-two compounds with diverse structural properties were tested for CYP26A1 inhibition using 9-cis-RA as a probe, and IC(50) values for 10 inhibitors were determined. The imidazole- and triazole-containing inhibitors [S-(R*,R*)]-N-[4-[2-(dimethylamino)-1-(1H-imidazole-1-yl)propyl]-phenyl]2-benzothiazolamine (R116010) and (R)-N-[4-[2-ethyl-1-(1H-1,2,4-triazol-1-yl)butyl]phenyl]-2-benzothiazolamine (R115866) were the most potent inhibitors of CYP26A1 with IC(50) values of 4.3 and 5.1 nM, respectively. Liarozole and ketoconazole were significantly less potent with IC(50) values of 2100 and 550 nM, respectively. The retinoic acid receptor (RAR) γ agonist CD1530 was as potent an inhibitor of CYP26A1 as ketoconazole with an IC(50) of 530 nM, whereas the RARα and RARß agonists tested did not significantly inhibit CYP26A1. The pan-RAR agonist 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid and the peroxisome proliferator-activated receptor ligands rosiglitazone and pioglitazone inhibited CYP26A1 with IC(50) values of 3.7, 4.2, and 8.6 µM, respectively. These data demonstrate that CYP26A1 has high ligand selectivity but accepts structurally related nuclear receptor agonists as inhibitors.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Oxigenases de Função Mista/metabolismo , Tretinoína/metabolismo , Animais , Linhagem Celular , Inibidores das Enzimas do Citocromo P-450 , Humanos , Cetoconazol/química , Cetoconazol/metabolismo , Ligantes , Fígado/efeitos dos fármacos , Oxigenases de Função Mista/antagonistas & inibidores , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ratos , Ácido Retinoico 4 Hidroxilase , Especificidade por Substrato/efeitos dos fármacos , Tretinoína/antagonistas & inibidores
5.
Biochemistry ; 50(13): 2387-93, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21370922

RESUMO

Catalytically promiscuous enzymes are intermediates in the evolution of new function from an existing pool of protein scaffolds. However, promiscuity will only confer an evolutionary advantage if other useful properties are not compromised or if there is no "negative trade-off" induced by the mutations that yield promiscuity. Therefore, identification and characterization of negative trade-offs incurred during the emergence of promiscuity are required to further develop the evolutionary models and to optimize in vitro evolution. One potential negative trade-off of catalytic promiscuity is increased susceptibility to inhibition, or inhibitory promiscuity. Here we exploit cytochrome P450s (CYPs) as a model protein scaffold that spans a vast range of catalytic promiscuity and apply a quantitative index to determine the relationship between promiscuity of catalysis and promiscuity of inhibition for a series of homologues. The aim of these studies is to begin to identify properties that, in general, correlate with catalytic promiscuity, hypothetically such as inhibitory promiscuity. Interestingly, the data indicate that the potential negative trade-off of inhibitory promiscuity is nearly insignificant because even highly substrate specific CYPs have high inhibitory promiscuity, with little incremental increase in susceptibility to inhibitory interactions as the substrate promiscuity increases across the series of enzymes. In the context of evolution, inhibitory promiscuity is not an obligate negative trade-off for catalytic promiscuity.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Modelos Biológicos , Biocatálise , Fenômenos Químicos , Sistema Enzimático do Citocromo P-450/química , Interações Medicamentosas , Humanos , Fígado/enzimologia , Microssomos/enzimologia , Modelos Moleculares , Proteínas Recombinantes/metabolismo , Estatística como Assunto , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...