Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37896570

RESUMO

In this paper, a novel feature generator framework is proposed for handwritten digit classification. The proposed framework includes a two-stage cascaded feature generator. The first stage is based on principal component analysis (PCA), which generates projected data on principal components as features. The second one is constructed by a partially trained neural network (PTNN), which uses projected data as inputs and generates hidden layer outputs as features. The features obtained from the PCA and PTNN-based feature generator are tested on the MNIST and USPS datasets designed for handwritten digit sets. Minimum distance classifier (MDC) and support vector machine (SVM) methods are exploited as classifiers for the obtained features in association with this framework. The performance evaluation results show that the proposed framework outperforms the state-of-the-art techniques and achieves accuracies of 99.9815% and 99.9863% on the MNIST and USPS datasets, respectively. The results also show that the proposed framework achieves almost perfect accuracies, even with significantly small training data sizes.

2.
Sensors (Basel) ; 23(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36679800

RESUMO

This article investigates and discusses challenges in the telecommunication field from multiple perspectives, both academic and industry sides are catered for, surveying the main points of technological transformation toward edge-cloud continuum from the view of a telco operator to show the complete picture, including the evolution of cloud-native computing, Software-Defined Networking (SDN), and network automation platforms. The cultural shift in software development and management with DevOps enabled the development of significant technologies in the telecommunication world, including network equipment, application development, and system orchestration. The effect of the aforementioned cultural shift to the application area, especially from the IoT point of view, is investigated. The enormous change in service diversity and delivery capabilities to mass devices are also discussed. During the last two decades, desktop and server virtualization has played an active role in the Information Technology (IT) world. With the use of OpenFlow, SDN, and Network Functions Virtualization (NFV), the network revolution has got underway. The shift from monolithic application development and deployment to micro-services changed the whole picture. On the other hand, the data centers evolved in several generations where the control plane cannot cope with all the networks without an intelligent decision-making process, benefiting from the AI/ML techniques. AI also enables operators to forecast demand more accurately, anticipate network load, and adjust capacity and throughput automatically. Going one step further, zero-touch networking and service management (ZSM) is proposed to get high-level human intents to generate a low-level configuration for network elements with validated results, minimizing the ratio of faults caused by human intervention. Harmonizing all signs of progress in different communication technologies enabled the use of edge computing successfully. Low-powered (from both energy and processing perspectives) IoT networks have disrupted the customer and end-point demands within the sector, as such paved the path towards devising the edge computing concept, which finalized the whole picture of the edge-cloud continuum.


Assuntos
Computação em Nuvem , Tecnologia , Humanos , Automação , Indústrias , Tecnologia da Informação
3.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678608

RESUMO

Multiple myeloma is a hematological cancer type. For its treatment, Bortezomib has been widely used. However, drug resistance to this effective chemotherapeutic has been developed for various reasons. 2D cell cultures and animal models have failed to understand the MM disease and Bortezomib resistance. It is therefore essential to utilize new technologies to reveal a complete molecular profile of the disease. In this review, we in-depth examined the possible molecular mechanisms that cause Bortezomib resistance and specifically addressed MM and Bortezomib resistance. Moreover, we also included the use of nanoparticles, 3D culture methods, microfluidics, and organ-on-chip devices in multiple myeloma. We also discussed whether the emerging technology offers the necessary tools to understand and prevent Bortezomib resistance in multiple myeloma. Despite the ongoing research activities on MM, the related studies cannot provide a complete summary of MM. Nanoparticle and 3D culturing have been frequently used to understand MM disease and Bortezomib resistance. However, the number of microfluidic devices for this application is insufficient. By combining siRNA/miRNA technologies with microfluidic devices, a complete molecular genetic profile of MM disease could be revealed. Microfluidic chips should be used clinically in personal therapy and point-of-care applications. At least with Bortezomib microneedles, it could be ensured that MM patients can go through the treatment process more painlessly. This way, MM can be switched to the curable cancer type list, and Bortezomib can be targeted for its treatment with fewer side effects.

4.
Biosensors (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421141

RESUMO

Both passive and active microfluidic chips are used in many biomedical and chemical applications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic devices are geometry-dependent, and their uses are rather limited. Active microfluidic devices include sensors or detectors that transduce chemical, biological, and physical changes into electrical or optical signals. Also, they are transduction devices that detect biological and chemical changes in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and organ modeling. This review provides a comprehensive overview of the significant advances that have been made in the development of microfluidics devices. We will discuss the function of microfluidic devices as micromixers or as sorters of cells and substances (e.g., microfiltration, flow or displacement, and trapping). Microfluidic devices are fabricated using a range of techniques, including molding, etching, three-dimensional printing, and nanofabrication. Their broad utility lies in the detection of diagnostic biomarkers and organ-on-chip approaches that permit disease modeling in cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor applications allow for point-of-care testing, using assays based on enzymes, nanozymes, antibodies, or nucleic acids (DNA or RNA). An anticipated development in the field includes the optimization of techniques for the fabrication of microfluidic devices using biocompatible materials. These developments will increase biomedical versatility, reduce diagnostic costs, and accelerate diagnosis time of microfluidics technology.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Microfluídica , Dispositivos Lab-On-A-Chip , DNA
5.
Sensors (Basel) ; 22(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35591187

RESUMO

The Internet of Things (IoT) has disrupted the IT landscape drastically, and Long Range Wide Area Network (LoRaWAN) is one specification that enables these IoT devices to have access to the Internet. Former security analyses have suggested that the gateways in LoRaWAN in their current state are susceptible to a wide variety of malicious attacks, which can be notoriously difficult to mitigate since gateways are seen as obedient relays by design. These attacks, if not addressed, can cause malfunctions and loss of efficiency in the network traffic. As a solution to this unique problem, this paper presents a novel certificate authentication technique that enhances the cyber security of gateways in the LoRaWAN network. The proposed technique considers a public key infrastructure (PKI) solution that considers a two-tier certificate authority (CA) setup, such as a root-CA and intermediate-CA. This solution is promising, as the simulation results validate that about 66.67% of the packets that are arriving from an illegitimate gateway (GW) are discarded in our implemented secure and reliable solution.

6.
Sensors (Basel) ; 21(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884012

RESUMO

This paper investigates and proposes a solution for Protocol Independent Switch Architecture (PISA) to process application layer data, enabling the inspection of application content. PISA is a novel approach in networking where the switch does not run any embedded binary code but rather an interpreted code written in a domain-specific language. The main motivation behind this approach is that telecommunication operators do not want to be locked in by a vendor for any type of networking equipment, develop their own networking code in a hardware environment that is not governed by a single equipment manufacturer. This approach also eases the modeling of equipment in a simulation environment as all of the components of a hardware switch run the same compatible code in a software modeled switch. The novel techniques in this paper exploit the main functions of a programmable switch and combine the streaming data processor to create the desired effect from a telecommunication operator perspective to lower the costs and govern the network in a comprehensive manner. The results indicate that the proposed solution using PISA switches enables application visibility in an outstanding performance. This ability helps the operators to remove a fundamental gap between flexibility and scalability by making the best use of limited compute resources in application identification and the response to them. The experimental study indicates that, without any optimization, the proposed solution increases the performance of application identification systems 5.5 to 47.0 times. This study promises that DPI, NGFW (Next-Generation Firewall), and such application layer systems which have quite high costs per unit traffic volume and could not scale to a Tbps level, can be combined with PISA to overcome the cost and scalability issues.

7.
Sensors (Basel) ; 20(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050165

RESUMO

The proliferation of the Internet of Things (IoT) caused new application needs to emerge as rapid response ability is missing in the current IoT end-devices. Therefore, Fog Computing has been proposed to be an edge component for the IoT networks as a remedy to this problem. In recent times, cyber-attacks are on the rise, especially towards infrastructure-less networks, such as IoT. Many botnet attack variants (Mirai, Torii, etc.) have shown that the tiny microdevices at the lower spectrum of the network are becoming a valued participant of a botnet, for further executing more sophisticated attacks against infrastructural networks. As such, the fog devices also need to be secured against cyber-attacks, not only software-wise, but also from hardware alterations and manipulations. Hence, this article first highlights the importance and benefits of fog computing for IoT networks, then investigates the means of providing hardware security to these devices with an enriched literature review, including but not limited to Hardware Security Module, Physically Unclonable Function, System on a Chip, and Tamper Resistant Memory.

8.
Sensors (Basel) ; 20(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927788

RESUMO

Continuous development of the Industrial Internet of Things (IIoT) has opened up enormous opportunities for the engineers to enhance the efficiency of the machines. Despite the development, many industry administrators still fear to use Internet for operating their machines due to untrusted nature of the communication channel. The utilization of internet for managing industrial operations can be widespread adopted if the authentication of the entities are performed and trust is ensured. The traditional schemes with their inherent security issues and other complexities, cannot be directly deployed to resource constrained network devices. Therefore, we have proposed a strong mutual authentication and secret key exchange protocol to address the vulnerabilities of the existing schemes. We have used various cryptography operations such as hashing, ciphering, and so forth, for providing secure mutual authentication and secret key exchange between different entities to restrict unauthorized access. Performance and security analysis clearly demonstrates that the proposed work is energy efficient (computation and communication inexpensive) and more robust against the attacks in comparison to the traditional schemes.

9.
Sensors (Basel) ; 15(11): 28960-78, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26593915

RESUMO

In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) "downward-IDS (D-IDS)" to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) "upward-IDS (U-IDS)" to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...