Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5781, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987545

RESUMO

Controlling large-scale many-body quantum systems at the level of single photons and single atomic systems is a central goal in quantum information science and technology. Intensive research and development has propelled foundry-based silicon-on-insulator photonic integrated circuits to a leading platform for large-scale optical control with individual mode programmability. However, integrating atomic quantum systems with single-emitter tunability remains an open challenge. Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters into advanced silicon-on-insulator photonic integrated circuits fabricated in a 300 mm foundry process. With this platform, we achieve single-photon emission via resonance fluorescence and scalable emission wavelength tunability. The combined control of photonic and quantum systems opens the door to programmable quantum information processors manufactured in leading semiconductor foundries.

2.
Nano Lett ; 21(1): 323-329, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33338376

RESUMO

Telecom-wavelength single photons are essential components for long-distance quantum networks. However, bright and pure single photon sources at telecom wavelengths remain challenging to achieve. Here, we demonstrate a bright telecom-wavelength single photon source based on a tapered nanobeam containing InAs/InP quantum dots. The tapered nanobeam enables directional and Gaussian-like far-field emission of the quantum dots. As a result, using above-band excitation we obtain an end-to-end brightness of 4.1 ± 0.1% and first-lens brightness of 27.0 ± 0.1% at the ∼1300 nm wavelength. Furthermore, we adopt quasi-resonant excitation to reduce both multiphoton emission and decoherence from unwanted charge carriers. As a result, we achieve a coherence time of 523 ± 16 ps and postselected Hong-Ou-Mandel visibility of 0.91 ± 0.09 along with a comparable first-lens brightness of 21.0 ± 0.1%. These results represent a major step toward a practical fiber-based single photon source at telecom wavelengths for long-distance quantum networks.

3.
Opt Express ; 27(12): 16882-16889, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252907

RESUMO

Integration of single-photon sources and detectors to silicon-based photonics opens the possibility of complex circuits for quantum information processing. In this work, we demonstrate integration of quantum dots with a silicon photonic add-drop filter for on-chip filtering and routing of telecom photons. A silicon microdisk resonator acts as a narrow filter that transfers the quantum dot emission and filters the background over a wide wavelength range. Moreover, by tuning the quantum dot emission wavelength over the resonance of the microdisk, we can control the transmission of the quantum dot emission to the drop and through channels of the add-drop filter. This result is a step toward the on-chip control of single photons using silicon photonics for applications in quantum information processing, such as linear optical quantum computation and boson sampling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...