Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Quant Imaging Med Surg ; 14(2): 1673-1685, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415151

RESUMO

Background: Myelin water imaging (MWI) is a myelin-specific technique, which has great potential for the assessment of demyelination and remyelination. This study develops a new MWI method, which employs a short repetition time adiabatic inversion recovery (STAIR) technique in combination with a commonly used fast spin echo (FSE) sequence and provides quantification of myelin water (MW) fractions. Method: Whole-brain MWI was performed using the short repetition time adiabatic inversion recovery prepared-fast spin echo (STAIR-FSE) technique on eight healthy volunteers (mean age: 38±14 years, four-males) and seven patients with multiple sclerosis (MS) (mean age: 53.7±8.7 years, two-males) on a 3T clinical magnetic resonance imaging scanner. To facilitate the quantification of apparent myelin water fraction (aMWF), a proton density-weighted FSE was also used during the scans to allow total water imaging. The aMWF measurements of MS lesions and normal-appearing white matter (NAWM) regions in MS patients were compared with those measured in normal white matter (NWM) regions in healthy volunteers. Both the analysis of variance (ANOVA) test and paired comparison were performed for the comparison. Results: The MW in the whole-brain was selectively imaged and quantified using the STAIR-FSE technique in all participants. MS lesions showed much lower signal intensities than NAWM in the STAIR-FSE images. ANOVA analysis revealed a significant difference in the aMWF measurements between the three groups. Moreover, the aMWF measurements in MS lesions were significantly lower than those in both NWM of healthy volunteers and NAWM of MS patients. Lower aMWF measurements in NAWM were also found in comparison with those in NWM. Conclusions: The STAIR-FSE technique is capable of measuring aMWF values for the indirect detection of myelin loss in MS, thus facilitating clinical translation of whole brain MWI and quantification, which show great potential for the detection and evaluation of changes in myelin in the brain of patients with MS for future larger cohort studies.

2.
Diagnostics (Basel) ; 14(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396456

RESUMO

Background: Delayed Post-Hypoxic Leukoencephalopathy (DPHL), or Grinker's myelinopathy, is a syndrome in which extensive changes are seen in the white matter of the cerebral hemispheres with MRI weeks or months after a hypoxic episode. T2-weighted spin echo (T2-wSE) and/or T2-Fluid Attenuated Inversion Recovery (T2-FLAIR) images classically show diffuse hyperintensities in white matter which are thought to be near pathognomonic of the condition. The clinical features include Parkinsonism and akinetic mutism. DPHL is generally regarded as a rare condition. Methods and Results: Two cases of DPHL imaged with MRI nine months and two years after probable hypoxic episodes are described. No abnormalities were seen on the T2-FLAIR images with MRI, but very extensive changes were seen in the white matter of the cerebral and cerebellar hemisphere on divided Subtraction Inversion Recovery (dSIR) images. dSIR sequences may produce ten times the contrast of conventional inversion recovery (IR) sequences from small changes in T1. The clinical findings in both cases were of cognitive impairment without Parkinsonism or akinetic mutism. Conclusion: The classic features of DPHL may only represent the severe end of a spectrum of diseases in white matter following global hypoxic injury to the brain. The condition may be much more common than is generally thought but may not be recognized using conventional clinical and MRI criteria for diagnosis. Reappraisal of the syndrome of DPHL to include clinically less severe cases and to encompass recent advances in MRI is advocated.

3.
Quant Imaging Med Surg ; 13(10): 7304-7337, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869282

RESUMO

This review describes targeted magnetic resonance imaging (tMRI) of small changes in the T1 and the spatial properties of normal or near normal appearing white or gray matter in disease of the brain. It employs divided subtracted inversion recovery (dSIR) and divided reverse subtracted inversion recovery (drSIR) sequences to increase the contrast produced by small changes in T1 by up to 15 times compared to conventional T1-weighted inversion recovery (IR) sequences such as magnetization prepared-rapid acquisition gradient echo (MP-RAGE). This increase in contrast can be used to reveal disease with only small changes in T1 in normal appearing white or gray matter that is not apparent on conventional MP-RAGE, T2-weighted spin echo (T2-wSE) and/or fluid attenuated inversion recovery (T2-FLAIR) images. The small changes in T1 or T2 in disease are insufficient to produce useful contrast with conventional sequences. To produce high contrast dSIR and drSIR sequences typically need to be targeted for the nulling TI of normal white or gray matter, as well as for the sign and size of the change in T1 in these tissues in disease. The dSIR sequence also shows high signal boundaries between white and gray matter. dSIR and drSIR are essentially T1 maps. There is a nearly linear relationship between signal and T1 in the middle domain (mD) of the two sequences which includes T1s between the nulling T1s of the two acquired IR sequences. The drSIR sequence is also very sensitive to reductions in T1 produced by Gadolinium based contrast agents (GBCAs), and when used with rigid body registration to align three-dimensional (3D) isotropic pre and post GBCA images may be of considerable value in showing subtle GBCA enhancement. In serial MRI studies performed at different times, the high signal boundaries generated by dSIR and drSIR sequences can be used with rigid body registration of 3D isotropic images to demonstrate contrast arising from small changes in T1 (without or with GBCA enhancement) as well as small changes in the spatial properties of normal tissues and lesions, such as their site, shape, size and surface. Applications of the sequences in cases of multiple sclerosis (MS) and methamphetamine dependency are illustrated. Using targeted narrow mD dSIR sequences, widespread abnormalities were seen in areas of normal appearing white matter shown with conventional T2-wSE and T2-FLAIR sequences. Understanding of the features of dSIR and drSIR images is facilitated by the use of their T1-bipolar filters; to explain their targeting, signal, contrast, boundaries, T1 mapping and GBCA enhancement. Targeted MRI (tMRI) using dSIR and drSIR sequences may substantially improve clinical MRI of the brain by providing unequivocal demonstration of abnormalities that are not seen with conventional sequences.

4.
Eur Spine J ; 32(7): 2358-2367, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195362

RESUMO

PURPOSE: Using ultrashort echo time (UTE) MRI, we determined prevalence of abnormal cartilaginous endplate (CEP), and the relationship between CEP and disc degeneration in human lumbar spines. MATERIALS AND METHODS: Lumbar spines from 71 cadavers (age 14-74 years) were imaged at 3 T using sagittal UTE and spin echo T2 map sequences. On UTE images, CEP morphology was defined as "normal" with linear high signal intensity or "abnormal" with focal signal loss and/or irregularity. On spin echo images, disc grade and T2 values of the nucleus pulposus (NP) and annulus fibrosus (AF) were determined. 547 CEPs and 284 discs were analysed. Effects of age, sex, and level on CEP morphology, disc grade, and T2 values were determined. Effects of CEP abnormality on disc grade, T2 of NP, and T2 of AF were also determined. RESULTS: Overall prevalence of CEP abnormality was 33% and it tended to increase with older ages (p = 0.08) and at lower spinal levels of L5 than L2 or L3 (p = 0.001). Disc grades were higher and T2 values of the NP were lower in older spines (p < 0.001) and at lower disc level of L4-5 (p < 0.05). We found significant association between CEP and disc degeneration; discs adjacent to abnormal CEPs had high grades (p < 0.01) and lower T2 values of the NP (p < 0.05). CONCLUSION: These results suggest that abnormal CEPs are frequently found, and it associates significantly with disc degeneration, suggesting an insight into pathoetiology of disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Idoso , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Degeneração do Disco Intervertebral/diagnóstico por imagem , Cartilagem , Imageamento por Ressonância Magnética/métodos , Vértebras Lombares/diagnóstico por imagem
5.
Appl Phys Rev ; 9(4): 041303, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36467869

RESUMO

Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.

6.
Quant Imaging Med Surg ; 12(9): 4658-4690, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36060593

RESUMO

This paper updates and extends three previous papers on tissue property filters (TP-filters), Multiplied, Added, Divided and/or Subtracted Inversion Recovery (MASTIR) pulse sequences and synergistic contrast MRI (scMRI). It does this by firstly adding the central contrast theorem (CCT) to TP-filters, secondly including division with MASTIR sequences to make them Multiplied, Added, Subtracted and/or Divided IR (MASDIR) sequences, and thirdly incorporating division into the image processing needed for scMR to increase synergistic T1 contrast. These updated concepts are then used to explain and improve contrast at tissue boundaries, as well as to develop imaging regimes to detect and monitor small changes to the brain over time and quantify T1. The CCT is in two parts: the first part states that contrast produced by each TP is the product of the change in TP multiplied by the TP sequence weighting which is the first partial derivative of the TP-filter. The second part states that the overall fractional contrast is the algebraic sum of the fractional contrasts produced by each of the TPs. Subtraction of two IR sequences alone about doubles contrast relative to a conventional single IR sequence. Division of this subtraction can amplify contrast 5-15 times compared with conventional IR sequences. Dividing sequences can be problematic in areas where the signal is zero but this is avoided by dividing the difference in signal of two magnitude reconstructed IR sequences by the sum of their signals. The basis for the production of high contrast, high spatial resolution boundaries at white-gray matter junctions, between cerebral cortex and cerebrospinal fluid (CSF) and at other sites with subtracted IR (SIR) and divided subtracted IR (dSIR) sequences is explained and examples are shown. A key concept is the tissue fraction f, which is the proportion of a tissue in a mixture of two tissues within a voxel. Contrast at boundaries is a function of the partial derivative of the TP-filter, the partial derivative of the relevant TP with respect to f, and the partial derivative of f with respect to distance, x. Location of tissue boundaries is important for segmentation and is helpful in determining if inversion times have been chosen correctly. In small change regimes, the high sensitivity to small changes in T1 provided by dSIR images, together with the high definition boundaries, afford mechanisms for detecting small changes due to contrast agents, disease, perfusion and other causes. 3D isotropic rigid body registration provides a technique for following these changes over time in serial studies. Images showing high lesion contrast, high definition tissue and fluid boundaries, and the detection of small changes are included. T1 maps can be created by linearly scaling dSIR images.

7.
Magn Reson Med ; 88(3): 1156-1169, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35613378

RESUMO

PURPOSE: To develop a new myelin water imaging (MWI) technique using a short-TR adiabatic inversion-recovery (STAIR) sequence on a clinical 3T MR scanner. METHODS: Myelin water (MW) in the brain has both a much shorter T1 and a much shorter T2 * than intracellular/extracellular water. A STAIR sequence with a short TR was designed to efficiently suppress long T1 signals from intracellular/extracellular water, and therefore allow selective imaging of MW, which has a much shorter T1 . Numerical simulation and phantom studies were performed to investigate the effectiveness of long T1 signal suppression. TheT2 * in white matter (WM) was measured with STAIR and compared with T2 * measured with a conventional gradient recall echo in in vivo study. Four healthy volunteers and 4 patients with multiple sclerosis were recruited for qualitative and quantitative MWI. Apparent MW fraction was generated to compare MW in normal WM in volunteers to MW in lesions in patients with multiple sclerosis. RESULTS: Both simulation and phantom studies showed that when TR was sufficiently short (eg, 250 ms), the STAIR sequence effectively suppressed long T1 signals from tissues with a broad range of T1 s using a single TR/TI combination. The volunteer study showed a short T2 * of 9.5 ± 1.7 ms in WM, which is similar to reported values for MW. Lesions in patients with multiple sclerosis showed a significantly lower apparent MW fraction (4.5% ± 1.0%) compared with that of normal WM (9.2% ± 1.5%) in healthy volunteers (p < 0.05). CONCLUSIONS: The STAIR sequence provides selective MWI in brain and can quantify reductions in MW content in patients with multiple sclerosis.


Assuntos
Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Água , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
8.
Quant Imaging Med Surg ; 12(1): 269-280, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993077

RESUMO

BACKGROUND: T1ρ has been extensively reported as a sensitive biomarker of biochemical changes in the nucleus pulposus (NP) and annulus fibrosis of intervertebral discs (IVDs). However, no T1ρ study of cartilaginous endplates (CEPs) has yet been reported because the relatively long echo times (TEs) of conventional clinical T1ρ sequences cannot effectively capture the fast-decaying magnetic resonance signals of CEPs, which have very short T2/T2*s. This can be overcome by using ultrashort echo time (UTE) T1ρ acquisitions. METHODS: Seventeen subjects underwent UTE with adiabatic T1ρ preparation (UTE-Adiab-T1ρ) and T2-weighted fast spin echo imaging of their lumbar spines. Each IVD was manually segmented into seven regions (i.e., outer anterior annulus fibrosis, inner anterior annulus fibrosis, outer posterior annulus fibrosis, inner posterior annulus fibrosis, superior CEP, inferior CEP, and NP). T1ρ values of these sub-regions were correlated with IVD modified Pfirrmann grades and subjects' ages. In addition, T1ρ values were compared in subjects with and without low back pain (LBP). RESULTS: Correlations of T1ρ values of the outer posterior annulus fibrosis, superior CEP, inferior CEP, and NP with modified Pfirrmann grades were significant (P<0.05) with R values of 0.51, 0.36, 0.38, and -0.94, respectively. Correlations of T1ρ values of the outer anterior annulus fibrosis, outer posterior annulus fibrosis, and NP with ages were significant with R equal to 0.52, 0.71, and -0.76, respectively. T1ρ differences of the outer posterior annulus fibrosis, inferior CEP, and NP between the subjects with and without LBP were significant (P=0.005, 0.020, and 0.000, respectively). CONCLUSIONS: The UTE-Adiab-T1ρ sequence can quantify T1ρ of whole IVDs including CEPs. This is an advance, and of value for comprehensive assessment of IVD degeneration.

9.
Quant Imaging Med Surg ; 11(8): 3677-3683, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341741

RESUMO

BACKGROUND: Center-out radial sampling of k-space in magnetic resonance imaging employs a different direction for each readout. Off-resonance artifacts (including those produced by chemical shift between water and fat) found with this type of sampling are usually described as blurring, however more specific characterization of these artifacts can be ascertained from the fact that their point spread function is ring-shaped. This produces effects that differ from those seen with Cartesian sampling of k-space. Experiments were designed to demonstrate the origin of these artifacts and a volunteer was imaged to show them. METHODS: Two phantoms containing oil in a syringe and an annulus of oil surrounded by water were scanned with a range of bandwidths from 62.5 down to 4 kHz. In a human volunteer, head, pelvis and spine images were obtained with bandwidths of 62.5 and 4 kHz. RESULTS: The two phantoms showed displacement of the oil signal away from the center into the region of the surrounding water. The effect increased as the bandwidth was decreased. In the head of the volunteer, signal from fat in red bone marrow in the skull was displaced centrally and peripherally relative to water within the marrow, and appeared in the region between the skull and the brain, as well as in the surrounding scalp. Displacements of the former type simulated subdural hematomas. Displacement of perivesical fat signal centrally over the wall of the bladder simulated bladder tumor, and displacement of fat signal from red bone marrow in the lumbar spine to the intervertebral discs simulated their cartilaginous endplates. CONCLUSIONS: Center-out radial artifacts are important to recognize on clinical images since they may mimic anatomy and simulate pathology. The article shows how these artifacts originate, includes examples, and describes how the artifacts differ from Cartesian chemical shift artifacts.

11.
J Magn Reson ; 323: 106898, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33429170

RESUMO

Long T2 water contamination is a major challenge with direct in vivo UTE imaging of ultrashort T2 components in the brain since water contributes most of the signal detected from white and gray matter. The Short TR Adiabatic Inversion Recovery prepared Ultrashort TE (STAIR-UTE) sequence can significantly suppress water signals and simultaneously image ultrashort T2 components. However, the TR used may not be sufficiently short to allow the STAIR preparation to completely suppress all the water signals in the brain due to specific absorption rate (SAR) limitations on clinical MR scanners. In this study, we describe a STAIR prepared dual-echo UTE sequence with complex Echo Subtraction (STAIR-dUTE-ES) which improves water suppression for selective ultrashort T2 imaging compared with that achieved with the STAIR-UTE sequence. Numerical simulations showed that the STAIR-dUTE-ES technique can effectively suppress water signals and allow accurate quantification of ultrashort T2 protons. Volunteer and Multiple Sclerosis (MS) patient studies demonstrated the feasibility of the STAIR-dUTE-ES technique for selective imaging and quantification of ultrashort T2 components in vivo. A significantly lower mean UltraShort T2 Proton Fraction (USPF) was found in lesions in MS patients (5.7 ± 0.7%) compared with that in normal white matter of healthy volunteers (8.9 ± 0.6%). The STAIR-dUTE-ES sequence provides robust water suppression for volumetric imaging and quantitation of ultrashort T2 component. The reduced USPF in MS lesions shows the clinical potential of the sequence for diagnosis and monitoring treatment in MS.


Assuntos
Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Adulto , Idoso , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnica de Subtração , Água , Substância Branca/diagnóstico por imagem
12.
Magn Reson Med ; 85(6): 3290-3298, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404142

RESUMO

PURPOSE: To describe a new method for accurate T1 measurement of cortical bone that fits the data sets of both 3D UTE actual flip angle imaging (UTE-AFI) and UTE with a single TR (UTE-STR) simultaneously (UTE-AFI-STR). THEORY AND METHODS: To make both the constant values and longitudinal mapping functions in the signal equations for UTE-AFI and UTE-STR identical, the same RF pulses and flip angles were used. Therefore, there were three unknowns in the three equations. This was sufficient to fit the data. Numerical simulation as well as ex vivo and in vivo cortical bone studies were performed to validate the T1 measurement accuracy with the UTE-AFI-STR method. The original UTE-AFI variable TR (VTR) (ie, combined UTE-AFI and UTE with VTR) and simultaneous fitting (sf) of UTE-AFI and UTE-VTR (sf-UTE-AFI-VTR) methods were performed for comparison. RESULTS: The numerical simulation study showed that the UTE-AFI-STR method provided accurate value of T1 when the SNR of the UTE-STR image was higher than 40. The ex vivo study showed that the UTE-AFI-STR method measured the T1 of cortical bone accurately, with difference ratios ranging from -5.0% to 0.4%. The in vivo study showed a mean T1 of 246 ms with the UTE-AFI-STR method, and mean difference ratios of 2.4% and 5.0%, respectively, compared with the other two methods. CONCLUSION: The 3D UTE-AFI-STR method provides accurate mapping of the T1 of cortical bone with improved time efficiency compared with the UTE-AFI-VTR/sf-UTE-AFI-VTR methods.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Osso e Ossos , Simulação por Computador , Osso Cortical/diagnóstico por imagem , Imagens de Fantasmas
13.
Quant Imaging Med Surg ; 10(10): 2030-2065, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33014733

RESUMO

This paper reviews magnetic resonance (MR) pulse sequences in which the same or different tissue properties (TPs) such as T1 and T2 are used to contribute synergistically to lesion contrast. It also shows how synergistic contrast can be created with Multiplied, Added, Subtracted and/or fiTted Inversion Recovery (MASTIR) sequences, and be used to improve the sensitivity, specificity and scope of clinical magnetic resonance imaging (MRI) protocols. Synergistic contrast can be created from: (i) the same TP, e.g., T1 used twice or more in a pulse sequence; (ii) different TPs such as ρm, T1, T2, and D* used once or more within a sequence, and (iii) additional suppression or reduction of signals from tissues and/or fluids such as fat, long T2 tissues and cerebrospinal fluid (CSF). The short inversion time (TI) inversion recovery (IR) (STIR) and double IR (DIR) sequences usually show synergistic positive contrast for lesions which have increases in both T1 and T2. The diffusion weighted pulsed gradient spin echo (PGSE) sequence shows synergistic contrast for lesions which have an increase in T2 and a decrease in D*; the sequence is both positively weighted for T2 and negatively weighted for D*. In the brain, when an IR sequence nulling white matter has subtracted from it an IR sequence nulling gray matter to form the subtracted IR (SIR) sequence, increases in the single TP T1 between the two nulling points of the original two sequences generate high synergistic positive contrast. In addition, the subtraction to produce the SIR sequence reduces fat and CSF signals. To provide high sensitivity to changes in TPs in disease the SIR sequence can be used (i) alone to provide synergistic T1 contrast as above; (ii) with T2-weighting to provide synergistic T1 and T2 contrast, and (iii) with T2- and D*-weighting to provide synergistic T1, T2, and D* contrast. The SIR sequence can also be used in reversed form (longer TI form minus shorter TI form) to produce very high positive synergistic T1 contrast for reductions in T1, and so increase the positive contrast enhancement produced by clinical gadolinium-based contrast agents (GBCAs) when they reduce T1. The specificity of MRI examinations can be improved by using the reversed SIR sequence with a long echo time (TE) gradient echo as well as echo subtraction to show synergistic high contrast from T1 and T2* shortening produced by organic iron. Other added and subtracted forms of the MASTIR sequence can be used synergistically to selectively show myelin, myelin water and fluids including blood and CSF. Protocols using MASTIR sequences to provide synergistic contrast in MRI of the brain, prostate and articular cartilage are included as illustrative examples, and the features of synergistic contrast MRI (scMRI) are compared to those of multiparametric MRI (mpMRI) and functional MRI (fMRI).

14.
Radiology ; 297(2): 392-404, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779970

RESUMO

Background Water signal contamination is a major challenge for direct ultrashort echo time (UTE) imaging of myelin in vivo because water contributes most of the signals detected in white matter. Purpose To validate a new short repetition time (TR) adiabatic inversion recovery (STAIR) prepared UTE (STAIR-UTE) sequence designed to suppress water signals and to allow imaging of ultrashort T2 protons of myelin in white matter using a clinical 3-T scanner. Materials and Methods In this prospective study, an optimization framework was used to obtain the optimal inversion time for nulling water signals using STAIR-UTE imaging at different TRs. Numeric simulation and phantom studies were performed. Healthy volunteers and participants with multiple sclerosis (MS) underwent MRI between November 2018 and October 2019 to compare STAIR-UTE and a clinical T2-weighted fluid-attenuated inversion recovery sequence for assessment of MS lesions. UTE measures of myelin were also performed to allow comparison of signals in lesions and with those in normal-appearing white matter (NAWM) in patients with MS and in normal white matter (NWM) in healthy volunteers. Results Simulation and phantom studies both suggest that the proposed STAIR-UTE technique can effectively suppress long T2 tissues with a broad range of T1s. Ten healthy volunteers (mean age, 33 years ± 8 [standard deviation]; six women) and 10 patients with MS (mean age, 51 years ± 16; seven women) were evaluated. The three-dimensional STAIR-UTE sequence effectively suppressed water components in white matter and selectively imaged myelin, which had a measured T2* value of 0.21 msec ± 0.04 in the volunteer study. A much lower mean UTE measure of myelin proton density was found in MS lesions (3.8 mol/L ± 1.5), and a slightly lower mean UTE measure was found in NAWM (7.2 mol/L ± 0.8) compared with that in NWM (8.0 mol/L ± 0.8) in the healthy volunteers (P < .001 for both comparisons). Conclusion The short repetition time adiabatic inversion recovery-prepared ultrashort echo time sequence provided efficient water signal suppression for volumetric imaging of myelin in the brain and showed excellent myelin signal contrast as well as marked ultrashort echo time signal reduction in multiple sclerosis lesions and a smaller reduction in normal-appearing white matter compared with normal white matter in volunteers. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Messina and Port in this issue.


Assuntos
Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Prospectivos
16.
Quant Imaging Med Surg ; 10(6): 1334-1369, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32550142

RESUMO

The group of Multiplied, Added, Subtracted and/or fiTted Inversion Recovery (MASTIR) pulse sequences in which usually two or more inversion recovery (IR) images of different types are combined is described, and uses for this type of sequence are outlined. IR sequences of different types can be multiplied, added, subtracted, and/or fitted together to produce variants of the MASTIR sequence. The sequences provide a range of options for increasing image contrast, demonstrating specific tissues and fluids of interest, and suppressing unwanted signals. A formalism using the concept of pulse sequences as tissue property filters is used to explain the signal, contrast and weighting of the pulse sequences with both univariate and multivariate filter models. Subtraction of one magnitude reconstructed IR image from another with a shorter TI can produce very high T1 dependent positive contrast from small increases in T1. The reverse subtracted IR sequence can provide high positive contrast enhancement with gadolinium chelates and iron deposition which decrease T1. Additional contrast to that arising from increases in T1 can be produced by supplementing this with contrast arising from concurrent increases in ρm and T2, as well as increases or decreases in diffusion using subtraction IR with echo subtraction and/or diffusion subtraction. Phase images may show 180º differences as a result of rotating into the transverse plane both positive and negative longitudinal magnetization. Phase images with contrast arising in this way, or other ways, can be multiplied by magnitude IR images to increase the contrast of the latter. Magnetization Transfer (MT) and susceptibility can be used with IR sequences to improve contrast. Selective images of white and brown adipose tissue lipid and water components can be produced using different TIs and in and out-of-phase TEs. Selective images of ultrashort and short T2 tissue components can be produced by nulling long T2 tissue components with an inversion pulse and subtraction of images with longer TEs from images with ultrashort TEs. The Double Echo Sliding IR (DESIRE) sequence provides images with a wide range of TIs from which it is possible to choose values of TI to achieve particular types of tissue and/or fluid contrast (e.g., for subtraction with different TIs, as described above, and for long T2 tissue signal nulling with UTE sequences). Unwanted tissue and fluid signals can be suppressed by addition and subtraction of phase-sensitive (ps) and magnitude reconstructed images. The sequence also offers options for synergistic use of the changes in blood and tissue ρm, T1, T2/T2*, D* and perfusion that can be seen with fMRI of the brain. In-vivo and ex-vivo illustrative examples of normal brain, cartilage, multiple sclerosis, Alzheimer's disease, and peripheral nerve imaged with different forms of the MASTIR sequence are included.

17.
Quant Imaging Med Surg ; 10(5): 1080-1120, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489930

RESUMO

This paper describes a quantitative approach to understanding the signal, contrast and weighting of magnetic resonance (MR) images. It uses the concept of pulse sequences as tissue property (TP) filters and models the signal, contrast and weighting of sequences using either a single TP-filter (univariate model) or several TP-filters (the multivariate model). For the spin echo (SE) sequence using the Bloch equations, voxel signal intensity is plotted against the logarithm of the value of the TPs contributing to the sequence signal to produce three TP-filters, an exponential ρm-filter, a low pass T1-filter and a high pass T2-filter. Using the univariate model which considers signal changes in only one of ρm, T1, or T2 at a time, the first partial derivative of signal with respect to the natural logarithm of ρm, T1 or T2 is the sequence weighting for each filter (for small changes in each TP). Absolute contrast is then the sequence weighting multiplied by the fractional change in TP for each filter. For large changes in TPs, the same approach is followed, but using the mean slope of the filter as the sequence weighting. These approaches can also be used for fractional contrast. The univariate TP-filter model provides a mathematical framework for converting conventional qualitative univariate weighting as used in everyday clinical practice into quantitative univariate weighting. Using the multivariate model which considers several TP-filters together, the relative contributions of each TP to overall sequence and image weighting are expressed as sequence and imaging weighting ratios respectively. This is not possible with conventional qualitative weighting which is univariate. The same approaches are used for inversion recovery (IR), pulsed gradient SE, spoiled gradient echo (SGE), balanced steady state free precession, ultrashort echo time and other pulse sequences. Other TPs such as susceptibility, chemical shift and flow can be included with phase along the Y axis of the TP-filter. Contrast agent effects are also included. In the text TP-filters are distinguished from k-space filters, signal filters (S-filters) which are used in imaging processing as well as to describe windowing the signal width and level of images, and spatial filters. The TP-filters approach resolves many of the ambiguities and inconsistencies associated with conventional qualitative weighting and provides a variety of new insights into the signal, contrast and weighting of MR images which are not apparent using qualitative weighting. The TP-filter approach relates the preparation component of pulse sequences to voxel signal, and contrast between two voxels. This is complementary to k-space which relates the acquisition component of pulse sequences to the spatial properties of MR images and their global contrast.

18.
Radiographics ; 40(4): 1107-1124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32412828

RESUMO

The first metatarsophalangeal joint (MTPJ) is vital to the biomechanics of the foot and supports a weight up to eight times heavier than the body during athletic activities. The first MTPJ comprises osseous and cartilaginous surfaces along with a complex of supporting structures, including the dorsal extensor tendons, collateral ligaments, and a plantar plate complex. In contradistinction to the lesser MTPJ plantar plates, a single dominant fibrocartilaginous capsular thickening does not exist at the first MTPJ. Instead, the plantar plate complex comprises a fibrocartilaginous pad that invests the hallux sesamoids and is inseparable from the plantar capsule, the intersesamoid ligament, paired metatarsosesamoid and sesamoid phalangeal ligaments (SPLs), and the musculotendinous structures. Acute injury at the first MTPJ is typically secondary to forced hyperextension-turf toe-and can involve multiple structures. During hyperextension, the resulting forces primarily load the distal SPLs, making these structures more susceptible to injury. SPL injuries are best seen in the sagittal plane at MRI. Radiography can also aid in diagnosis of full-thickness SPL tears, demonstrating reduced sesamoid excursion at lateral dorsiflexed (stress) views. Hallux valgus is another common condition, resulting in progressive disabling deformity at the first MTPJ. Without appropriate treatment, first MTPJ injuries may progress to degenerative hallux rigidus. The authors detail the anatomy of the first MTPJ in cadaveric forefeet by using high-resolution 3-T and 11.7-T MRI and anatomic-pathologic correlation. Injuries to the plantar plate complex, collateral ligaments, and extensor mechanism are discussed using clinical case examples. Online supplemental material is available for this article. ©RSNA, 2020.


Assuntos
Instabilidade Articular/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Articulação Metatarsofalângica/diagnóstico por imagem , Articulação Metatarsofalângica/lesões , Pontos de Referência Anatômicos , Fenômenos Biomecânicos , Cadáver , Humanos , Articulação Metatarsofalângica/anatomia & histologia
19.
Magn Reson Med ; 84(2): 634-645, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31863519

RESUMO

PURPOSE: We describe the measurement of bound water T1 ( T1BW ) of cortical bone in vitro and in vivo with a 3D adiabatic inversion recovery ultrashort echo time (IR-UTE) Cones sequence using a clinical 3T scanner. METHODS: A series IR-UTE data from 6 repetition times (TRs) with 5 inversion times (TIs) at each TR were acquired from 12 human tibial bone specimens, and data from 4 TRs with 5 TIs at each TR were acquired from the tibial midshafts of 8 healthy volunteers. The pore water nulling point was calculated from exponential fitting of the inversion recovery curve at each TR. Bone specimens and volunteers were then scanned again with the calculated nulling point at each TR. T1BW was derived through exponential fitting of data from IR-UTE images acquired at different TRs using the calculated pore water nulling point for each TR. RESULTS: In vitro pore water nulling TIs were 141.3 ± 11.6, 123.4 ± 8.9, 101.3 ± 6.2, 88.9 ± 5.3, 74.8 ± 4.2, and 59.2 ± 3.9 ms for the 6 TRs of 500, 400, 300, 250, 200, and 150 ms, respectively. In vivo pore water nulling TIs were 132.8 ± 12.8, 110.3 ± 10.0, 80.0 ± 7.2, and 63.9 ± 5.4 ms for the 4 TRs of 400, 300, 200, and 150 ms, respectively. Excellent exponential fitting was achieved for IR-UTE imaging of bound water with pore water nulled at each TR. The mean T1BW was 106.9 ± 6.3 ms in vitro and 112.3 ± 16.4 ms in vivo. CONCLUSION: Using the 3D IR-UTE Cones with a variable TR/TI approach, T1BW of cortical bone was calculated after complete nulling of pore water signals.


Assuntos
Imageamento por Ressonância Magnética , Água , Osso e Ossos , Osso Cortical , Humanos , Imageamento Tridimensional
20.
Radiology ; 294(2): 362-374, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31746689

RESUMO

Background Signal contamination from long T2 water is a major challenge in direct imaging of myelin with MRI. Nulling of the unwanted long T2 signals can be achieved with an inversion recovery (IR) preparation pulse to null long T2 white matter within the brain. The remaining ultrashort T2 signal from myelin can be detected with an ultrashort echo time (UTE) sequence. Purpose To develop patient-specific whole-brain myelin imaging with a three-dimensional double-echo sliding inversion recovery (DESIRE) UTE sequence. Materials and Methods The DESIRE UTE sequence generates a series of IR images with different inversion times during a single scan. The optimal inversion time for nulling long T2 signal is determined by finding minimal signal on the second echo. Myelin images are generated by subtracting the second echo image from the first UTE image. To validate this method, a prospective study was performed in phantoms, cadaveric brain specimens, healthy volunteers, and patients with multiple sclerosis (MS). A total of 20 healthy volunteers (mean age, 40 years ± 13 [standard deviation], 10 women) and 20 patients with MS (mean age, 58 years ± 8; 15 women) who underwent MRI between November 2017 and February 2019 were prospectively included. Analysis of variance was performed to evaluate the signal difference between MS lesions and normal-appearing white matter in patients with MS. Results High signal intensity and corresponding T2* and T1 of the extracted myelin vesicles provided evidence for direct imaging of ultrashort-T2 myelin protons using the UTE sequence. Gadobenate dimeglumine phantoms with a wide range of T1 values were selectively suppressed with DESIRE UTE. In the ex vivo brain study of MS lesions, signal loss was observed in MS lesions and was conformed with histologic analysis. In the human study, there was a significant reduction in normalized signal intensity in MS lesions compared with that in normal-appearing white matter (0.19 ± 0.10 vs 0.76 ± 0.11, respectively; P < .001). Conclusion The double-echo sliding inversion recovery ultrashort echo time sequence can generate whole-brain myelin images specifically with a clinical 3-T scanner. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Port in this issue.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...