Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol NMR Assign ; 17(2): 159-165, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37162737

RESUMO

Functional bacterial amyloids provide structural scaffolding to bacterial biofilms. In contrast to the pathological amyloids, they have a role in vivo and are tightly regulated. Their presence is essential to the integrity of the bacterial communities surviving in biofilms and may cause serious health complications. Targeting amyloids in biofilms could be a novel approach to prevent chronic infections. However, structural information is very scarce on them in both soluble monomeric and insoluble fibrillar forms, hindering our molecular understanding and strategies to fight biofilm related diseases. Here, we present solution-state NMR assignment of 250 amino acid long biofilm-forming functional-amyloid FapC from Pseudomonas aeruginosa. We studied full-length (FL) and shorter minimalistic-truncated (L2R3C) FapC constructs without the signal-sequence that is required for secretion. 91% and 100% backbone NH resonance assignments for FL and L2R3C constructs, respectively, indicate that soluble monomeric FapC is predominantly disordered, with sizeable secondary structural propensities mostly as PP2 helices, but also as α-helices and ß-sheets highlighting hotspots for fibrillation initiation interface. A shorter construct showing almost identical NMR chemical shifts highlights the promise of utilizing it for more demanding solid-state NMR studies that require methods to alleviate signal redundancy due to almost identical repeat units. This study provides key NMR resonance assignments for future structural studies of soluble, pre-fibrillar and fibrillar forms of FapC.


Assuntos
Amiloide , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Ressonância Magnética Nuclear Biomolecular , Amiloide/química , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Biofilmes
2.
J Am Chem Soc ; 144(24): 10809-10816, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35574633

RESUMO

Fluorosubstituted tryptophans serve as valuable probes for fluorescence and nuclear magnetic resonance (NMR) studies of proteins. Here, we describe an unusual photoreactivity introduced by replacing the single tryptophan in cyclophilin A with 7-fluoro-tryptophan. UV exposure at 282 nm defluorinates 7-fluoro-tryptophan and crosslinks it to a nearby phenylalanine, generating a bright fluorophore. The crosslink-containing fluorescent protein possesses a large quantum yield of ∼0.40 with a fluorescence lifetime of 2.38 ns. The chemical nature of the crosslink and the three-dimensional protein structure were determined by mass spectrometry and NMR spectroscopy. To the best of our knowledge, this is the first report of a Phe-Trp crosslink in a protein. Our finding may break new ground for developing novel fluorescence probes and for devising new strategies to exploit aromatic crosslinks in proteins.


Assuntos
Fenilalanina , Triptofano , Fenilalanina/química , Espectrometria de Fluorescência , Triptofano/química
3.
Nat Commun ; 12(1): 6864, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824204

RESUMO

HIV-1 Vpr is a prototypic member of a large family of structurally related lentiviral virulence factors that antagonize various aspects of innate antiviral immunity. It subverts host cell DNA repair and protein degradation machineries by binding and inhibiting specific post-replication repair enzymes, linking them via the DCAF1 substrate adaptor to the Cullin 4 RING E3 ligase (CRL4DCAF1). HIV-1 Vpr also binds to the multi-domain protein hHR23A, which interacts with the nucleotide excision repair protein XPC and shuttles ubiquitinated proteins to the proteasome. Here, we report the atomic resolution structure of Vpr in complex with the C-terminal half of hHR23A, containing the XPC-binding (XPCB) and ubiquitin-associated (UBA2) domains. The XPCB and UBA2 domains bind to different sides of Vpr's 3-helix-bundle structure, with UBA2 interacting with the α2 and α3 helices of Vpr, while the XPCB domain contacts the opposite side of Vpr's α3 helix. The structure as well as biochemical results reveal that hHR23A and DCAF1 use overlapping binding surfaces on Vpr, even though the two proteins exhibit entirely different three-dimensional structures. Our findings show that Vpr independently targets hHR23A- and DCAF1- dependent pathways and highlight HIV-1 Vpr as a versatile module that interferes with DNA repair and protein degradation pathways.


Assuntos
Enzimas Reparadoras do DNA/química , Proteínas de Ligação a DNA/química , HIV-1/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Cristalografia por Raios X , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
4.
Biomol NMR Assign ; 14(1): 13-17, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31463759

RESUMO

Comprehensive resonance assignments and delineation of the secondary structure elements of the C-terminal Vpr-binding region of hHR23A, residues 223-363, were achieved by triple-resonance NMR experiments on uniformly 13C,15N-labeled protein. Assignments are 100% and > 95% complete for backbone and side-chain resonances, respectively. This data constitutes important complementary information for our ongoing structure determination of the Vpr-hHR23A(223-363) complex. At high concentrations, severe line-broadening was observed for several residues in the 1H-15N HSQC spectrum, most likely resulting from inter-molecular interactions.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Humanos , Isótopos de Nitrogênio , Ligação Proteica , Estrutura Secundária de Proteína
5.
J Phys Chem B ; 123(24): 5048-5058, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31125232

RESUMO

We report dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) NMR spectroscopy in viral capsids from HIV-1 and bacteriophage AP205. Viruses regulate their life cycles and infectivity through modulation of their structures and dynamics. While static structures of capsids from several viruses are now accessible with near-atomic-level resolution, atomic-level understanding of functionally important motions in assembled capsids is lacking. We observed up to 64-fold signal enhancements by DNP, which permitted in-depth analysis of these assemblies. For the HIV-1 CA assemblies, a remarkably high spectral resolution in the 3D and 2D heteronuclear data sets permitted the assignment of a significant fraction of backbone and side-chain resonances. Using an integrated DNP MAS NMR and molecular dynamics (MD) simulation approach, the conformational space sampled by the assembled capsid at cryogenic temperatures was mapped. Qualitatively, a remarkable agreement was observed for the experimental 13C/15N chemical shift distributions and those calculated from substructures along the MD trajectory. Residues that are mobile at physiological temperatures are frozen out in multiple conformers at cryogenic conditions, resulting in broad experimental and calculated chemical shift distributions. Overall, our results suggest that DNP MAS NMR measurements in combination with MD simulations facilitate a thorough understanding of the dynamic signatures of viral capsids.


Assuntos
Bacteriófagos/química , Proteínas do Capsídeo/química , HIV-1/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Bacteriófagos/metabolismo , Proteínas do Capsídeo/metabolismo , HIV-1/metabolismo , Conformação Proteica
6.
Retrovirology ; 16(1): 10, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947724

RESUMO

BACKGROUND: Efficient HIV-1 replication depends on interaction of the viral capsid with the host protein cyclophilin A (CypA). CypA, a peptidylprolyl isomerase, binds to an exposed loop in the viral CA protein via the enzyme's active site. Recent structural analysis of CypA in complex with CA tubes in conjunction with molecular dynamics simulations identified a secondary CA binding site on CypA that allows a bridging interaction with two hexameric subunits of the assembled CA lattice, leading to capsid stabilization (Liu et al. in Nat Commun 7:10714, 2016). RESULTS: We performed mutational analysis of residues that have been proposed to mediate CA binding at the secondary binding site on CypA (A25, K27, P29 and K30) and tested the effects of the amino acid substitutions using interaction assays and HIV-1 infection assays in cells. The binding of recombinant CypA to self-assembled CA tubes or native HIV-1 capsids was measured in vitro using a quantitative fluorescence microscopy binding assay revealing that affinity and stoichiometry of CypA to the CA lattice was not affected by the substitutions. To test for functionality of the CypA secondary CA-binding site in HIV-1 infection, mutant CypA proteins were expressed in cells in which endogenous CypA was deleted, and the effects on HIV-1 infection were assayed. In normal HeLa-P4 cells, infection with HIV-1 bearing the A92E substitution in CA is inhibited by endogenous CypA and was inhibited to the same extent by expression of CypA mutants in CypA-null HeLa-P4 cells. Expression of the mutant CypA proteins in CypA-null Jurkat cells restored their permissiveness to infection by wild type HIV-1. CONCLUSIONS: The amino acid changes at A25, K27, P29 and K30 did not affect the affinity of CypA for the CA lattice and did not impair CypA function in infection assays suggesting that these residues are not part of a secondary CA binding site on CypA.


Assuntos
Capsídeo/metabolismo , Ciclofilina A/química , HIV-1/fisiologia , Interações entre Hospedeiro e Microrganismos , Replicação Viral , Aminoácidos , Sítios de Ligação , Proteínas do Capsídeo/metabolismo , Ciclofilina A/genética , Células HeLa , Humanos , Células Jurkat , Ligação Proteica , Vírion/fisiologia
7.
Angew Chem Int Ed Engl ; 57(50): 16375-16379, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30225969

RESUMO

19 F NMR spectroscopy is an attractive and growing area of research with broad applications in biochemistry, chemical biology, medicinal chemistry, and materials science. We have explored fast magic angle spinning (MAS) 19 F solid-state NMR spectroscopy in assemblies of HIV-1 capsid protein. Tryptophan residues with fluorine substitution at the 5-position of the indole ring were used as the reporters. The 19 F chemical shifts for the five tryptophan residues are distinct, reflecting differences in their local environment. Spin-diffusion and radio-frequency-driven-recoupling experiments were performed at MAS frequencies of 35 kHz and 40-60 kHz, respectively. Fast MAS frequencies of 40-60 kHz are essential for consistently establishing 19 F-19 F correlations, yielding interatomic distances of the order of 20 Å. Our results demonstrate the potential of fast MAS 19 F NMR spectroscopy for structural analysis in large biological assemblies.


Assuntos
Proteínas do Capsídeo/química , Infecções por HIV/virologia , HIV-1/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas do Capsídeo/ultraestrutura , Humanos , Modelos Moleculares , Multimerização Proteica
8.
J Biomol NMR ; 69(4): 247, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234947

RESUMO

In the original publication of the article, the given name and family name of the author P. Andrew Karplus was published incorrectly. The name should read as "P. Andrew" - Given name and "Karplus" - Family name.

9.
Nat Commun ; 8(1): 1779, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176596

RESUMO

Maturation of HIV-1 particles encompasses a complex morphological transformation of Gag via an orchestrated series of proteolytic cleavage events. A longstanding question concerns the structure of the C-terminal region of CA and the peptide SP1 (CA-SP1), which represents an intermediate during maturation of the HIV-1 virus. By integrating NMR, cryo-EM, and molecular dynamics simulations, we show that in CA-SP1 tubes assembled in vitro, which represent the features of an intermediate assembly state during maturation, the SP1 peptide exists in a dynamic helix-coil equilibrium, and that the addition of the maturation inhibitors Bevirimat and DFH-055 causes stabilization of a helical form of SP1. Moreover, the maturation-arresting SP1 mutation T8I also induces helical structure in SP1 and further global dynamical and conformational changes in CA. Overall, our results show that dynamics of CA and SP1 are critical for orderly HIV-1 maturation and that small molecules can inhibit maturation by perturbing molecular motions.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Proteínas do Capsídeo/genética , Linhagem Celular , HIV-1/genética , Humanos , Peptídeos/metabolismo , Montagem de Vírus
10.
J Phys Chem B ; 121(15): 3853-3863, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28181439

RESUMO

Single particle cryoEM has emerged as a powerful method for structure determination of proteins and complexes, complementing X-ray crystallography and NMR spectroscopy. Yet, for many systems, the resolution of cryoEM density map has been limited to 4-6 Å, which only allows for resolving bulky amino acids side chains, thus hindering accurate model building from the density map. On the other hand, experimental chemical shifts (CS) from solution and solid state MAS NMR spectra provide atomic level data for each amino acid within a molecule or a complex; however, structure determination of large complexes and assemblies based on NMR data alone remains challenging. Here, we present a novel integrated strategy to combine the highly complementary experimental data from cryoEM and NMR computationally by molecular dynamics simulations to derive an atomistic model, which is not attainable by either approach alone. We use the HIV-1 capsid protein (CA) C-terminal domain as well as the large capsid assembly to demonstrate the feasibility of this approach, termed NMR CS-biased cryoEM structure refinement.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , HIV-1/química , HIV-1/ultraestrutura , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Cristalografia por Raios X
11.
J Mol Biol ; 429(2): 308-323, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27986569

RESUMO

Candidates for the toxic molecular species in the expanded polyglutamine (polyQ) repeat diseases range from various types of aggregates to "misfolded" monomers. One way to vet these candidates is to develop mutants that restrict conformational landscapes. Previously, we inserted two self-complementary ß-hairpin enhancing motifs into a short polyQ sequence to generate a mutant, here called "ßHP," that exhibits greatly improved amyloid nucleation without measurably enhancing ß-structure in the monomer ensemble. We extend these studies here by introducing single-backbone H-bond impairing modifications αN-methyl Gln or l-Pro at key positions within ßHP. Modifications predicted to allow formation of a fully H-bonded ß-hairpin at the fibril edge while interfering with H-bonding to the next incoming monomer exhibit poor amyloid formation and act as potent inhibitors in trans of simple polyQ peptide aggregation. In contrast, a modification that disrupts intra-ß-hairpin H-bonding within ßHP, while also aggregating poorly, is ineffective at inhibiting amyloid formation in trans. The inhibitors constitute a dynamic version of the edge-protection negative design strategy used in protein evolution to limit unwanted protein aggregation. Our data support a model in which polyQ peptides containing strong ß-hairpin encouraging motifs only rarely form ß-hairpin conformations in the monomer ensemble, but nonetheless take on such conformations at key steps during amyloid formation. The results provide insights into polyQ solution structure and fibril formation while also suggesting an approach to the design of inhibitors of polyQ amyloid growth that focuses on conformational requirements for fibril and nucleus elongation.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos/química , Engenharia de Proteínas , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Peptídeos/antagonistas & inibidores , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes
12.
J Biomol NMR ; 66(4): 273-280, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27858311

RESUMO

The solution NMR structure of the isolated thumb subdomain of HIV-1 reverse transcriptase (RT) has been determined. A detailed comparison of the current structure with dozens of the highest resolution crystal structures of this domain in the context of the full-length enzyme reveals that the overall structures are very similar, with only two regions exhibiting local conformational differences. The C-terminal capping pattern of the αH helix is subtly different, and the loop connecting the αI and αJ helices in the p51 chain of the full-length p51/p66 heterodimeric RT differs from our NMR structure due to unique packing interactions in mature RT. Overall, our data show that the thumb subdomain folds independently and essentially the same in isolation as in its natural structural context.


Assuntos
Transcriptase Reversa do HIV/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Multimerização Proteica , Soluções
13.
Mol Cell ; 64(4): 815-825, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27840029

RESUMO

The five-subunit yeast Paf1 complex (Paf1C) regulates all stages of transcription and is critical for the monoubiquitylation of histone H2B (H2Bub), a modification that broadly influences chromatin structure and eukaryotic transcription. Here, we show that the histone modification domain (HMD) of Paf1C subunit Rtf1 directly interacts with the ubiquitin conjugase Rad6 and stimulates H2Bub independently of transcription. We present the crystal structure of the Rtf1 HMD and use site-specific, in vivo crosslinking to identify a conserved Rad6 interaction surface. Utilizing ChIP-exo analysis, we define the localization patterns of the H2Bub machinery at high resolution and demonstrate the importance of Paf1C in targeting the Rtf1 HMD, and thereby H2Bub, to its appropriate genomic locations. Finally, we observe HMD-dependent stimulation of H2Bub in a transcription-free, reconstituted in vitro system. Taken together, our results argue for an active role for Paf1C in promoting H2Bub and ensuring its proper localization in vivo.


Assuntos
Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Formaldeído/química , Histonas/química , Histonas/genética , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
14.
J Am Chem Soc ; 138(42): 14066-14075, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27701859

RESUMO

HIV-1 CA capsid protein possesses intrinsic conformational flexibility, which is essential for its assembly into conical capsids and interactions with host factors. CA is dynamic in the assembled capsid, and residues in functionally important regions of the protein undergo motions spanning many decades of time scales. Chemical shift anisotropy (CSA) tensors, recorded in magic-angle-spinning NMR experiments, provide direct residue-specific probes of motions on nano- to microsecond time scales. We combined NMR, MD, and density-functional-theory calculations, to gain quantitative understanding of internal backbone dynamics in CA assemblies, and we found that the dynamically averaged 15N CSA tensors calculated by this joined protocol are in remarkable agreement with experiment. Thus, quantitative atomic-level understanding of the relationships between CSA tensors, local backbone structure, and motions in CA assemblies is achieved, demonstrating the power of integrating NMR experimental data and theory for characterizing atomic-resolution dynamics in biological systems.

15.
Biochemistry ; 55(21): 2944-59, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27163633

RESUMO

Human APOBEC3B (A3B) is a member of the APOBEC3 (A3) family of cytidine deaminases, which function as DNA mutators and restrict viral pathogens and endogenous retrotransposons. Recently, A3B was identified as a major source of genetic heterogeneity in several human cancers. Here, we determined the solution nuclear magnetic resonance structure of the catalytically active C-terminal domain (CTD) of A3B and performed detailed analyses of its deaminase activity. The core of the structure comprises a central five-stranded ß-sheet with six surrounding helices, common to all A3 proteins. The structural fold is most similar to that of A3A and A3G-CTD, with the most prominent difference being found in loop 1. The catalytic activity of A3B-CTD is ∼15-fold lower than that of A3A, although both exhibit a similar pH dependence. Interestingly, A3B-CTD with an A3A loop 1 substitution had significantly increased deaminase activity, while a single-residue change (H29R) in A3A loop 1 reduced A3A activity to the level seen with A3B-CTD. This establishes that loop 1 plays an important role in A3-catalyzed deamination by precisely positioning the deamination-targeted C into the active site. Overall, our data provide important insights into the determinants of the activities of individual A3 proteins and facilitate understanding of their biological function.


Assuntos
Citidina Desaminase/metabolismo , DNA/química , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Domínio Catalítico , Citidina Desaminase/química , DNA/metabolismo , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
16.
Cell Cycle ; 15(11): 1425-38, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27210019

RESUMO

Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.


Assuntos
Células Epiteliais/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Lisina/química , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/química , Substituição de Aminoácidos , Apoptose , Arginina/química , Arginina/metabolismo , Linhagem Celular Tumoral , Senescência Celular , Ciclina G1/genética , Ciclina G1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/patologia , Glutamina/química , Glutamina/metabolismo , Humanos , Lisina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Moleculares , Mutação , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Transdução de Sinais , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Nat Commun ; 7: 10714, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26940118

RESUMO

The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.


Assuntos
Proteínas do Capsídeo/metabolismo , Ciclofilina A/farmacologia , Regulação Viral da Expressão Gênica/fisiologia , Domínio Catalítico , Simulação por Computador , Escherichia coli/metabolismo , HIV-1 , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Montagem de Vírus
18.
J Phys Chem B ; 120(2): 329-39, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26709853

RESUMO

Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies.


Assuntos
HIV-1/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Virais/química , Capsídeo/química , Conformação Proteica
19.
Proc Natl Acad Sci U S A ; 112(47): 14617-22, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26553990

RESUMO

Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactions with the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the escape from CypA dependence, by magic-angle spinning (MAS) NMR and molecular dynamics (MD). Through the analysis of backbone (1)H-(15)N and (1)H-(13)C dipolar tensors and peak intensities from 3D MAS NMR spectra of wild-type and the A92E and G94D CypA escape mutants, we demonstrate that assembled CA is dynamic, particularly in loop regions. The CypA loop in assembled wild-type CA from two strains exhibits unprecedented mobility on the nanosecond to microsecond timescales, and the experimental NMR dipolar order parameters are in quantitative agreement with those calculated from MD trajectories. Remarkably, the CypA loop dynamics of wild-type CA HXB2 assembly is significantly attenuated upon CypA binding, and the dynamics profiles of the A92E and G94D CypA escape mutants closely resemble that of wild-type CA assembly in complex with CypA. These results suggest that CypA loop dynamics is a determining factor in HIV-1's escape from CypA dependence.


Assuntos
Capsídeo/química , Ciclofilina A/química , HIV-1/química , Regulação Alostérica , Capsídeo/ultraestrutura , Ciclofilina A/ultraestrutura , HIV-1/ultraestrutura , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Mutação/genética , Fatores de Tempo
20.
J Biol Chem ; 290(29): 17935-17945, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26045556

RESUMO

Sterile α motif (SAM) and histidine/aspartate (HD)-containing protein 1 (SAMHD1) restricts human/simian immunodeficiency virus infection in certain cell types and is counteracted by the virulence factor Vpx. Current evidence indicates that Vpx recruits SAMHD1 to the Cullin4-Ring Finger E3 ubiquitin ligase (CRL4) by facilitating an interaction between SAMHD1 and the substrate receptor DDB1- and Cullin4-associated factor 1 (DCAF1), thereby targeting SAMHD1 for proteasome-dependent down-regulation. Host-pathogen co-evolution and positive selection at the interfaces of host-pathogen complexes are associated with sequence divergence and varying functional consequences. Two alternative interaction interfaces are used by SAMHD1 and Vpx: the SAMHD1 N-terminal tail and the adjacent SAM domain or the C-terminal tail proceeding the HD domain are targeted by different Vpx variants in a unique fashion. In contrast, the C-terminal WD40 domain of DCAF1 interfaces similarly with the two above complexes. Comprehensive biochemical and structural biology approaches permitted us to delineate details of clade-specific recognition of SAMHD1 by lentiviral Vpx proteins. We show that not only the SAM domain but also the N-terminal tail engages in the DCAF1-Vpx interaction. Furthermore, we show that changing the single Ser-52 in human SAMHD1 to Phe, the residue found in SAMHD1 of Red-capped monkey and Mandrill, allows it to be recognized by Vpx proteins of simian viruses infecting those primate species, which normally does not target wild type human SAMHD1 for degradation.


Assuntos
Interações Hospedeiro-Patógeno , Infecções por Lentivirus/metabolismo , Lentivirus/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Células HEK293 , Humanos , Infecções por Lentivirus/virologia , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Estrutura Terciária de Proteína , Proteína 1 com Domínio SAM e Domínio HD , Alinhamento de Sequência , Proteínas Virais Reguladoras e Acessórias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...