Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm Res ; 46(8): 713-721, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37728834

RESUMO

Tolperisone, a muscle relaxant used for post-stroke spasticity, is metabolized to its main metabolite by CYP2D6 and to a lesser extent by CYP2C19 and CYP1A2. We investigated the effects of CYP2D6 and CYP2C19 genetic polymorphisms and cigarette smoking on tolperisone pharmacokinetics. A 150 mg oral dose of tolperisone was given to 184 healthy Korean subjects and plasma concentrations of tolperisone were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A 3.14-fold significant increase in AUC0-∞ was observed in the CYP2D6*10/*10 group compared with the CYP2D6*wt/*wt group, whereas a 3.59-fold increase in AUC0-∞ was observed in CYP2C19PMs compared to CYP2C19EMs. Smokers had a 38.5% decrease in AUC0-∞ when compared to non-smokers. When these effects were combined, CYP2D6*10/*10-CYP2C19PM-Non-smokers had a 25.9-fold increase in AUC0-∞ compared to CYP2D6*wt/*wt-CYP2C19EM-Smokers. Genetic polymorphisms of CYP2D6 and CYP2C19 and cigarette smoking independently and significantly affected tolperisone pharmacokinetics and these effects combined resulted in a much greater impact on tolperisone pharmacokinetics.


Assuntos
Fumar Cigarros , Tolperisona , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Tolperisona/farmacocinética , Cromatografia Líquida , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Área Sob a Curva , Espectrometria de Massas em Tandem , Polimorfismo Genético , Genótipo
2.
Arch Pharm Res ; 46(2): 111-116, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36564599

RESUMO

Tolperisone hydrochloride is a centrally-acting muscle relaxant used for relieving spasticities of neurological origin and muscle spasms associated with painful locomotor diseases. It is metabolized to the inactive metabolite mainly by CYP2D6 and, to a lesser extent, by CYP2C19 and CYP1A2. In our previous study, the pharmacokinetics of tolperisone was significantly affected by the genetic polymorphism of CYP2D6, but the wide interindividual variation of tolperisone pharmacokinetics was not explained by genetic polymorphism of CYP2D6 alone. Thus, we studied the effects of CYP2C19 genetic polymorphism on tolperisone pharmacokinetics. Eighty-one subjects with different CYP2C19 genotypes received a single oral dose of 150 mg tolperisone with 240 mL of water, and blood samples were collected up to 12 h after dosing. The plasma concentration of tolperisone was measured by a liquid chromatography-tandem mass spectrometry system. The CYP2C19PM group had significantly higher Cmax and lower CL/F values than the CYP2C19EM and CYP2C19IM groups. The AUCinf of the CYP2C19PM group was 2.86-fold and 3.00-fold higher than the CYP2C19EM and CYP2C19IM groups, respectively. In conclusion, the genetic polymorphism of CYP2C19 significantly affected tolperisone pharmacokinetics.


Assuntos
Tolperisona , Humanos , Tolperisona/farmacocinética , Citocromo P-450 CYP2D6/genética , Voluntários Saudáveis , Citocromo P-450 CYP2C19/genética , Genótipo , Polimorfismo Genético
3.
Arch Pharm Res ; 46(1): 59-64, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36542291

RESUMO

Tolperisone, a muscle relaxant used for post-stroke spasticity, has been reported to have a very wide interindividual pharmacokinetic variability. It is metabolized mainly by CYP2D6 and, to a lesser extent, by CYP2C19 and CYP1A2. CYP2D6 is a highly polymorphic enzyme, and CYP2D6*wt/*wt, CYP2D6*wt/*10 and CYP2D6*10/*10 genotypes constitute more than 90% of the CYP2D6 genotypes in the Korean population. Thus, effects of the CYP2D6*10 on tolperisone pharmacokinetics were investigated in this study to elucidate the reasons for the wide interindividual variability. Oral tolperisone 150 mg was given to sixty-four healthy Koreans, and plasma concentrations of tolperisone were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CYP2D6*10/*10 and CYP2D6*wt/*10 groups had significantly higher Cmax and lower CL/F values than the CYP2D6*wt/*wt group. The AUCinf of CYP2D6*10/*10 and CYP2D6*wt/*10 groups were 5.18-fold and 2.25-fold higher than the CYP2D6*wt/*wt group, respectively. There were considerable variations in the Cmax and AUC values within each genotype group, and the variations were greater as the activity of CYP2D6 decreased. These results suggest that the genetic polymorphism of CYP2D6 significantly affected tolperisone pharmacokinetics and factor(s) other than CYP2D6 may also have significant effects on the pharmacokinetics of tolperisone.


Assuntos
Citocromo P-450 CYP2D6 , Tolperisona , Humanos , Alelos , Cromatografia Líquida , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genótipo , Espectrometria de Massas em Tandem , Tolperisona/farmacocinética
4.
Arch Pharm Res ; 41(9): 921-930, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30191460

RESUMO

Cytochrome P450 (CYP) 2D6 is present in less than about 2% of all CYP enzymes in the liver, but it is involved in the metabolism of about 25% of currently used drugs. CYP2D6 is the most polymorphic among the CYP enzymes. We determined alleles and genotypes of CYP2D6 in 3417 Koreans, compared the frequencies of CYP2D6 alleles with other populations, and observed the differences in pharmacokinetics of metoprolol, a prototype CYP2D6 substrate, depending on CYP2D6 genotype. A total of 3417 unrelated healthy subjects were recruited for the genotyping of CYP2D6 gene. Among them, 42 subjects with different CYP2D6 genotypes were enrolled in the pharmacokinetic study of metoprolol. The functional allele *1 and *2 were present in frequencies of 34.6 and 11.8%, respectively. In decreased functional alleles, *10 was the most frequent with 46.2% and *41 allele was present in 1.4%. The nonfunctional alleles *5 and *14 were present at 4.5 and 0.5% frequency, respectively. The *X × N allele was present at a frequency of 1.0%. CYP2D6*1/*1, *1/*2 and *2/*2 genotypes with normal enzyme activity were present in 12.1%, 8.6% and 1.4% of the subjects, respectively. CYP2D6*5/*5, *5/*14, and *14/*14 genotypes classified as poor metabolizer were only present in 4, 2, and 1 subjects, respectively. Mutant genotypes with frequencies of more than 1% were CYP2D6*1/*10 (32.0%), *10/*10 (22.3%), *2/*10 (11.7%), *5/*10 (3.7%), *1/*5 (2.5%), and *10/*41 (1.2%). The relative clearance of metoprolol in CYP2D6*1/*10, *1/*5, *10/*10, *5/*10, and *5/*5 genotypes were 69%, 57%, 24%, 14% and 9% of CYP2D6*wt/*wt genotype, respectively. These results will be very useful in establishing a strategy for precision medicine related to the genetic polymorphism of CYP2D6.


Assuntos
Povo Asiático/genética , População Negra/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Frequência do Gene/genética , População Branca/genética , Genótipo , Humanos , República da Coreia
5.
Sci Rep ; 8(1): 12405, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120390

RESUMO

Atomoxetine is a norepinephrine reuptake inhibitor indicated in the treatment of attention-deficit/hyperactivity disorder. It is primarily metabolized by CYP2D6 to its equipotent metabolite, 4-hydroxyatomoxetine, which promptly undergoes further glucuronidation to an inactive 4-HAT-O-glucuronide. Clinical trials have shown that decreased CYP2D6 activity leads to substantially elevated atomoxetine exposure and increase in adverse reactions. The aim of this study was to to develop a pharmacologically based pharmacokinetic (PBPK) model of atomoxetine in different CYP2D6 genotypes. A single 20 mg dose of atomoxetine was given to 19 healthy Korean individuals with CYP2D6*wt/*wt (*wt = *1 or *2) or CYP2D6*10/*10 genotype. Based on the results of this pharmacokinetic study, a PBPK model for CYP2D6*wt/*wt individuals was developed. This model was scaled to those with CYP2D6*10/*10 genotype, as well as CYP2D6 poor metabolisers. We validated this model by comparing the predicted pharmacokinetic parameters with diverse results from the literature. The presented PBPK model describes the pharmacokinetics after single and repeated oral atomoxetine doses with regard to CYP2D6 genotype and phenotype. This model could be utilized for identification of appropriate dosages of atomoxetine in patients with reduced CYP2D6 activity to minimize the adverse events, and to enable personalised medicine.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Cloridrato de Atomoxetina/farmacologia , Citocromo P-450 CYP2D6/genética , Genótipo , Modelos Teóricos , Farmacogenética , Variantes Farmacogenômicos , Adulto , Alelos , Área Sob a Curva , Feminino , Humanos , Masculino , Farmacogenética/métodos , Adulto Jovem
6.
Eur J Clin Pharmacol ; 74(11): 1417-1426, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30039199

RESUMO

PURPOSE: CYP3A4, CYP2C19, and CYP3A5 are primarily involved in the metabolism of cilostazol. We investigated the effects of CYP2C19 and CYP3A5 genetic polymorphisms on the pharmacokinetics of cilostazol and its two active metabolites. METHODS: Thirty-three healthy Korean volunteers were administered a single 100-mg oral dose of cilostazol. The concentrations of cilostazol and its active metabolites (OPC-13015 and OPC-13213) in the plasma were determined by HPLC-MS/MS. RESULTS: Although the pharmacokinetic parameters for cilostazol were similar in different CYP2C19 and CYP3A5 genotypes, CYP2C19PM subjects showed significantly higher AUC0-∞ for OPC-13015 and lower for OPC-13213 compared to those in CYP2C19EM subjects (P < 0.01 and P < 0.001, respectively). Pharmacokinetic differences in OPC-13015 between CYP3A5 non-expressors and expressors were significant only within CYP2C19PM subjects. The amount of cilostazol potency-adjusted total active moiety was the greatest in subjects with CYP2C19PM-CYP3A5 non-expressor genotype. CONCLUSION: These results suggest that CYP2C19 and CYP3A5 genetic polymorphisms affect the plasma exposure of cilostazol total active moiety. CYP2C19 plays a crucial role in the biotransformation of cilostazol.


Assuntos
Cilostazol/farmacocinética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP3A/genética , Inibidores da Fosfodiesterase 3/farmacocinética , Tetrazóis/sangue , Administração Oral , Adulto , Área Sob a Curva , Povo Asiático/genética , Cromatografia Líquida de Alta Pressão/métodos , Cilostazol/administração & dosagem , Cilostazol/sangue , Genótipo , Humanos , Masculino , Inibidores da Fosfodiesterase 3/administração & dosagem , Polimorfismo Genético , Espectrometria de Massas em Tandem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...