Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38825645

RESUMO

Preeclampsia is caused by placental hypoxia and systemic inflammation and is associated with reduced placental growth factor (PlGF) and endothelial nitric oxide synthase (eNOS) levels. The molecular signaling axes involved in this process may play a role in the pathogenesis of preeclampsia. Here, we found that hypoxic exposure increased hypoxia-inducible factor-1α (HIF-1α)/Twist1-mediated miR-214-3p biogenesis in trophoblasts, suppressing PlGF production and trophoblast invasion. TNF-α stimulation increased NF-κB-dependent miR-214-3p expression in endothelial cells, impairing eNOS expression and causing endothelial dysfunction. Synthetic miR-214-3p administration to pregnant mice decreased PlGF and eNOS expression, resulting in preeclampsia-like symptoms, including hypertension, proteinuria, and fetal growth restriction. Conversely, miR-214-3p deletion maintained the PlGF and eNOS levels in hypoxic pregnant mice, alleviating preeclampsia-like symptoms and signs. These findings provide new insights into the role of HIF-1/Twist1- and NF-κB-responsive miR-214-3p-dependent PlGF and eNOS downregulation in the pathogenesis of preeclampsia and establish miR-214-3p as a therapeutic or preventive target for preeclampsia and its complications.

2.
Nat Commun ; 13(1): 6303, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36272977

RESUMO

Regulated in development and DNA damage response 1 (REDD1) expression is upregulated in response to metabolic imbalance and obesity. However, its role in obesity-associated complications is unclear. Here, we demonstrate that the REDD1-NF-κB axis is crucial for metabolic inflammation and dysregulation. Mice lacking Redd1 in the whole body or adipocytes exhibited restrained diet-induced obesity, inflammation, insulin resistance, and hepatic steatosis. Myeloid Redd1-deficient mice showed similar results, without restrained obesity and hepatic steatosis. Redd1-deficient adipose-derived stem cells lost their potential to differentiate into adipocytes; however, REDD1 overexpression stimulated preadipocyte differentiation and proinflammatory cytokine expression through atypical IKK-independent NF-κB activation by sequestering IκBα from the NF-κB/IκBα complex. REDD1 with mutated Lys219/220Ala, key amino acid residues for IκBα binding, could not stimulate NF-κB activation, adipogenesis, and inflammation in vitro and prevented obesity-related phenotypes in knock-in mice. The REDD1-atypical NF-κB activation axis is a therapeutic target for obesity, meta-inflammation, and metabolic complications.


Assuntos
Fígado Gorduroso , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/genética , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Inflamação/metabolismo , Fígado Gorduroso/metabolismo , Citocinas , Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...