Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 103(1): 243-249, 1993 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12231930

RESUMO

Three isoforms of dihydroxyacetone phosphate reductase in extracts from Dunaliella tertiolecta have been separated by a diethylaminoethyl cellulose column chromatography with a shallow NaCl gradient. The chloroplasts contained the two major isoforms, and the third, minor form was in the cytosol. The isoforms are unstable in the absence of glycerol and they are cold labile, but they may be partially reactivated at 35[deg]C. The first chloroplast form to elute from the DEAE cellulose column was the major form when the cells were grown on high NaCl and it has been referred to as the form for glycerol production for osmoregulation or "osmoregulator form." The second form increased in specific activity when inorganic phosphate was increased in the growth media to stimulate growth, and it has been given the designation for the form for glyceride synthesis, "glyceride form." The osmoregulator form was stimulated by NaCl added to the enzyme assay, but not by reduced Escherichia coli thioredoxin. The glyceride form had properties similar to the enzyme in leaf chloroplast, such as inhibition by NaCl and by fatty acyl-coenzyme A derivatives and some stimulation by dithiothreitol, uridine diphosphate galactose, cyti-dine diphosphate dipalmatoyl diglyceride, and reduced E. coli thioredoxin. Thus, Dunaliella chloroplasts have a salt-stimulated osmoregulatory form of dihydroxyacetone phosphate reductase, which seems to have a role in glycerol production, and an isoform, which may be involved in glyceride synthesis and which has properties similar to the enzyme in chloroplasts of higher plants.

2.
Plant Physiol ; 100(1): 352-9, 1992 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16652968

RESUMO

A cytosolic form of dihydroxyacetone phosphate (DHAP) reductase was purified 200,000-fold from spinach (Spinacia oleracea L.) leaves to apparent electrophoretic homogeneity. The purification procedure included anion-exchange chromatography, gel filtration, hydrophobic chromatography, and dye-ligand chromatography on Green-A and Red-A agaroses. The enzyme, prepared in an overall yield of 14%, had a final specific activity of about 500 mumol of DHAP reduced min(-1) mg(-1) protein, a subunit molecular mass of 38 kD, and a native molecular mass of 75 kD. A chloroplastic isoform of DHAP reductase was separated from the cytosolic form by anion-exchange chromatography and partially purified 56,000-fold to a specific activity of 135 mumol min(-1) mg(-1) protein. Antibodies generated in rabbits against the cytosolic form did not cross-react with the chloroplastic isoform. The two reductases were specific for NADH and DHAP. Although they exhibited some dissimilarities, both isoforms were severely inhibited by higher molecular weight fatty acyl coenzyme A esters and phosphohydroxypyruvate and moderately inhibited by nucleotides. In contrast to previous reports, the partially purified chloroplastic enzyme was not stimulated by dithiothreitol or thioredoxin, nor was the purified cytosolic enzyme stimulated by fructose 2,6-bisphosphate. A third DHAP reductase isoform was isolated from spinach leaf peroxisomes that had been prepared by isopycnic sucrose density gradient centrifugation. The peroxisomal DHAP reductase was sensitive to antibodies raised against the cytosolic enzyme and had a slightly smaller subunit molecular weight than the cytosolic isoform.

3.
Plant Physiol ; 91(1): 345-51, 1989 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16667023

RESUMO

Two isoforms of dihydroxyacetone phosphate reductase were present in Dunaliella tertiolecta. The major form was located in the chloroplast and the minor form in the cytosol. The chloroplastic reductase eluted first from a DEAE cellulose column followed immediately by the cytosolic form. Both forms were unstable and cold labile. Addition of 5 millimolar dithiothreitol helped to stabilize the enzymes. The cytosolic isoform of DHAP reductase was detected only if the cells were in an active log phase of growth. Then its activity was 20 to 30% of the total reductase activity. When cell cultures entered late log phase of growth the activity of the cytosolic form of the enzyme disappeared, but the chloroplastic form remained. The cytosolic DHAP reductase from Dunaliella has some properties similar to the cytosolic isoform from spinach leaves. Detergents inhibited both enzymes. However, neither form of the algal dihydroxyacetone phosphate reductase was stimulated by fructose 2,6-bisphosphate. In Dunaliella the properties of the chloroplastic form were those expected for glycerol production for osmoregulation, whereas the cytosolic form, like the reductases in leaves, is more likely involved in glycerol phosphate formation for lipid synthesis.

4.
Plant Physiol ; 89(1): 305-8, 1989 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16666531

RESUMO

Young or mature rosette leaves from spinach (Spinacia oleracea L.) plants growing in the field, in the greenhouse, or in a growth chamber under a regimen of 8 hours light and 16 hours dark contained 15 to 50 nanomoles per minute per gram wet weight of NADH:dihydroxyacetone phosphate reductase activity. Of this activity, 75 to 87% was the chloroplastic isoform and 25 to 13% was the cytosolic form. When plants were induced to senesce, as measured by stem elongation and flowering, the percentage of the two reductase isoforms in rosette or stem leaves changed to about 12% as the chloroplastic and 88% as the cytosolic isoform. The change in enzyme activity of the rosette leaves occurred within 3 days, before phenotypic changes were observed. Likewise, when plants senesced in continuous darkness, the percentage of chloroplastic to cytosolic reductase changed from 80:20% to 25:75% after 62 hours before changes in total protein or chlorophyll occurred. The ratio of activities did not change in the first 16 hours of darkness or overnight. In each case the change in ratio resulted from about a 75% decrease in activity of the chloroplastic isoform and up to 14-fold increase in cytosolic isoform. In spinach leaves purchased at a local market primarily only the cytosolic isoform remained. When plants were returned to normal day-nights, after 62 hours in continuous darkness, the activity of the chloroplastic isoform increased, but not to control levels after 3 days, while the cytosolic enzyme decreased within 1 day to normal day-night values. Changes in activity were not due to changes during in vitro assays in activation by thioredoxin for the chloroplastic isoform or fructose 2,6-phosphate for the cytosolic isoform.

5.
Plant Physiol ; 88(3): 896-903, 1988 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16666401

RESUMO

A dihydroxyacetone phosphate (DHAP) reductase has been isolated in 50% yield from Dunaliella tertiolecta by rapid chromatography on diethylaminoethyl cellulose. The activity was located in the chloroplasts. The enzyme was cold labile, but if stored with 2 molar glycerol, most of the activity was restored at 30 degrees C after 20 minutes. The spinach (Spinacia oleracea L.) reductase isoforms were not activated by heat treatment. Whereas the spinach chloroplast DHAP reductase isoform was stimulated by leaf thioredoxin, the enzyme from Dunaliella was stimulated by reduced Escherichia coli thioredoxin. The reductase from Dunaliella was insensitive to surfactants, whereas the higher plant reductases were completely inhibited by traces of detergents. The partially purified, cold-inactivated reductase from Dunaliella was reactivated and stimulated by 25 millimolar Mg(2+) or by 250 millimolar salts, such as NaCl or KCl, which inhibited the spinach chloroplast enzyme. Phosphate at 3 to 10 millimolar severely inhibited the algal enzyme, whereas phosphate stimulated the isoform in spinach chloroplasts. Phosphate inhibition of the algal reductase was partially reversed by the addition of NaCl or MgCl(2) and totally by both. In the presence of 10 millimolar phosphate, 25 millimolar MgCl(2), and 100 millimolar NaCl, reduced thioredoxin causes a further twofold stimulation of the algal enzyme. The Dunaliella reductase utilized either NADH or NADPH with the same pH maximum at about 7.0. The apparent K(m) (NADH) was 74 micromolar and K(m) (NADPH) was 81 micromolar. Apparent V(max) was 1100 mumoles DHAP reduced per hour per milligram chlorophyll for NADH, but due to NADH inhibition highest measured values were 350 to 400. The DHAP reductase from spinach chloroplasts exhibited little activity with NADPH above pH 7.0. Thus, the spinach chloroplast enzyme appears to use NADH in vivo, whereas the chloroplast enzyme from Dunaliella or the cytosolic isozyme from spinach may utilize either nucleotide.

6.
Plant Physiol ; 87(2): 379-83, 1988 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16666150

RESUMO

The chloroplastic and cytosolic forms of spinach (Spinacia oleracea cv Long Standing Bloomsdale) leaf NADH:dihydroxyacetone phosphate (DHAP) reductase were separated and partially purified. The chloroplastic form was stimulated by dithiothreitol, reduced thioredoxin, dihydrolipoic acid, 6-phosphogluconate, and phosphate; the cytosolic isozyme was stimulated by fructose 2,6-bisphosphate but not by reduced thioredoxin. End product components that severely inhibited both forms of the reductase included lipids and free fatty acids, membranes, and glycerol phosphate. In addition, two groups of inhibitory peptides were obtained from the fraction precipitated by 70 to 90% saturation with (NH(4))(2)SO(4). Chromatography of this fraction on Sephadex G-50 revealed a peptide peak of about 5 kilodaltons which inhibited the chloroplastic DHAP reductase and a second peak containing peptides of about 2 kilodaltons which inhibited the cytosolic form of the enzyme. Regulation of the reduction of dihydroxyacetone phosphate from the C(3) photosynthetic carbon cycle or from glycolysis is a complex process involving activators such as thioredoxin or fructose 2,6-bisphosphate, peptide and lipid inhibitors, and intermediary metabolites. It is possible that fructose 2,6-bisphosphate increases lipid production by stimulating DHAP reductase for glycerol phosphate production as well as inhibiting fructose 1,6-bisphosphatase to stimulate glycolysis.

7.
Plant Physiol ; 86(1): 98-103, 1988 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16665901

RESUMO

Two forms of dihydroxyacetone phosphate reductase are present in spinach, soybean, pea, and mesophyll cells of corn leaves. An improved homogenizing medium was developed to measure this activity. The enzyme was detectable only after dialysis of the 35 to 70% saturated (NH(4))(2)SO(4) fraction and the two forms were separated by chromatography on either DEAE cellulose or Sephacryl S-200. About 80% of the reductase was one form in the chloroplast and the rest was a second form in the cytosol as determined by chromatography and by fractionation of subcellular organelles. The amount of activity detectable in the chloroplast fraction was 10.7 micromoles of dihydroxyacetone phosphate reductase per hour per milligram chlorophyll from spinach leaves and 4.9 from pea leaves. The chloroplast form eluted first from DEAE cellulose and, being smaller, it eluted second from Sephacryl S-200. Activity of the chloroplast form was stimulated 3- to 5-fold by the addition of 1 millimolar dithiothreitol or 50 microgram reduced Escherichia coli thioredoxin or 4 micrograms spinach thioredoxin to the assay mixture. This stimulation was not observed with monothiols. Activity of the cytosolic form was not affected by either reduced thioredoxin or dithiothreitol.

9.
Plant Physiol ; 53(4): 603-9, 1974 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16658750

RESUMO

The ricinine content of etiolated seedlings of Ricinus communis increased nearly 12-fold over a 4-day period. In plants quinolinic acid is an intermediate in the de novo pathway for the synthesis of pyridine nucleotides. The only known enzyme in the de novo pathway for pyridine nucleotide biosynthesis, quinolinic acid phosphoribosyltransferase, increased 6-fold in activity over a 4-day period which preceded the onset of ricinine biosynthesis by 1 day. The activity of the remainder of the pyridine nucleotide cycle enzymes in the seedlings, as monitored by the specific activity of nicotinic acid phosphoribosyltransferase and nicotinamide deamidase, was similar to that found in the mature green plant. In the roots of Nicotiana rustica, where the pyridine alkaloid nicotine is synthesized, the level of quinolinic acid phosphoribosyltransferase was 38-fold higher than the level of nicotinic acid phosphoribosyltransferase, whereas in most other plants examined, the specific activity of quinolinic acid phosphoribosyltransferase was similar to the level of activity of enzymes in the pyridine nucleotide cycle itself. A positive correlation therefore exists between the specific activity of a de novo pathway enzyme catalyzing pyridine nucleotide biosynthesis in Ricinus communis and Nicotiana rustica and the biosynthesis of ricinine and nicotine, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...