Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431494

RESUMO

Carburization of cladding materials has long been a concern for the nuclear industry and has led to the restricted use of high-thermal conductivity fuels such as uranium carbides. With the rise of small modular reactors (SMRs) that frequently implement a graphite core-block, carburization of reactor components is once more in the foreground as a potential failure mechanism. To ensure commercial viability for SMRs, neutron-friendly cladding materials such as Zr-based alloys are required. In this work, the carburization kinetics of Zircaloy-4 (Zry-4), for the temperature range 1073-1673 K (covering typical operating temperatures and off-normal scenarios) are established. The following Arrhenius relationship for the parabolic constant describing ZrC growth is derived: Kp (in µm2/s) = 609.35 exp(-1.505 × 105/RT)). Overall, the ZrC growth is sluggish below 1473 K which is within the operational temperature range of SMRs. In all cases the ZrC that forms from solid state reaction is hypo-stoichiometric, as confirmed through XRD. The hardness and elastic modulus of carburized Zry-4 are also examined and it is shown that despite the formation of a ZrC layer, C ingress in the Zry-4 bulk does not impact the mechanical response after carburization at 1073 K and 1473 K for 96 h.

2.
Science ; 359(6372): 186-191, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29326267

RESUMO

In common with many strongly correlated electron systems, intermediate valence compounds are believed to display a crossover from a high-temperature regime of incoherently fluctuating local moments to a low-temperature regime of coherent hybridized bands. We show that inelastic neutron scattering measurements of the dynamic magnetic susceptibility of CePd3 provides a benchmark for ab initio calculations based on dynamical mean field theory. The magnetic response is strongly momentum dependent thanks to the formation of coherent f-electron bands at low temperature, with an amplitude that is strongly enhanced by local particle-hole interactions. The agreement between experiment and theory shows that we have a robust first-principles understanding of the temperature dependence of f-electron coherence.

3.
Sci Rep ; 5: 15278, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26472071

RESUMO

Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. That some of these signatures of coherence in an atom-based system extend to ambient temperature suggests a novel mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. A macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...