Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 126(11): 3472-6, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15025474

RESUMO

A versatile methodology to prepare hybrid biomaterials by atom transfer radical polymerization from resin-supported peptides has been established. As an example, we have synthesized a GRGDS-functionalized poly(2-hydroxyethyl methacrylate). The peptide-polymer was characterized by solid-state (13)C NMR and GPC and found to have a number average molecular weight of 4420 and a polydispersity of 1.47. These values are comparable to those obtained from solution-phase syntheses, suggesting the ATRP reaction is successful from a peptide-conjugated solid support. Solid-state (13)C NMR was used to characterize multiple steps in the reaction, and the synthesis was found to be near quantitative. We have performed cell adhesion experiments and observed the GRGDS sequence-promoted cell adhesion, whereas unfunctionalized poly(2-hydroxyethyl methacrylate) did not. By incorporating cell-signaling moieties in materials with defined molecular architecture, it will be possible to control the interactions between polymeric materials and biological systems.


Assuntos
Oligopeptídeos/síntese química , Poliaminas/síntese química , Poli-Hidroxietil Metacrilato/análogos & derivados , Poli-Hidroxietil Metacrilato/síntese química , Animais , Adesão Celular , Hidrogéis/síntese química , Hidrogéis/química , Camundongos , Células NIH 3T3 , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Poliaminas/química , Poli-Hidroxietil Metacrilato/química , Resinas Sintéticas/química
2.
J Am Soc Mass Spectrom ; 14(1): 51-7, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12504333

RESUMO

The present study demonstrates the feasibility of the eta5-cyclopentadienylcobalt ion (CpCo*+) as a suitable cationization reagent for saturated hydrocarbon analysis by mass spectrometry. Ion/molecule reactions of CpCo*+ and three medium chain-length n-alkanes were examined using Fourier-transform ion cyclotron resonance mass spectrometry. Second-order rate constants and reaction efficiencies were determined for the reactions studied. Loss of two hydrogen molecules from the CpCo-alkane ion complex was found to dominate all reactions ( > or = 80%). Furthermore, this dehydrogenation reaction efficiency increases with increasing chain length. These preliminary results suggest that the CpCo*+ ion may be a promising cationization reagent of longer chain saturated hydrocarbons and polyolefins.

3.
Rapid Commun Mass Spectrom ; 16(15): 1494-500, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12125027

RESUMO

Small angle neutron scattering (SANS) is used to measure the size and the dispersion of synthetic polymers in matrix-assisted laser desorption/ionization (MALDI) matrixes. Deuterated polystyrene (DPS) and dithranol in tetrahydrofuran were deposited by electrospray onto a substrate for small angle neutron scattering (SANS) measurements. DPS with 6050 and 27,000 g mol(-1) molecular masses were prepared at mass fractions between 0.2 and 6%. All samples contained large aggregates of DPS with characteristic sizes >200 A that represent hundreds of aggregated chains. Samples of mass fraction 1% DPS (6050 g mol(-1)) in 2,5-dihydroxybenzoic acid, all-trans-retinoic acid, and sinapinic acid also have large zero angle scattering characteristic of large aggregates. The morphological trend obtained from the SANS measurements of the DPS aggregate size in the four matrixes is dithranol > 2,5-dihydroxybenzoic acid > all-trans-retinoic acid > sinapinic acid. These measurements indicate that DPS in dithranol exhibits the most strong phase separation, while DPS in sinapinic acid shows considerable domain mixing. All of these matrixes produce MALDI signal strength under appropriate conditions, suggesting that strong phase separation does not diminish the signal-to-noise ratio. DPS (188,000 g mol(-1)) in biphenyl was used as a model system of a matrix that can be either crystalline or amorphous. SANS data shows that above the biphenyl melting point, a conventional solution is formed that has molecularly dispersed polymers. Upon crystallization, there is strong aggregation of the DPS into large domains. Therefore, the crystalline matrixes commonly used in MALDI measurements probably cause large aggregations of polymers to be present during the MALDI process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA